Abstract
Heavy metals, including mercury (Hg), accumulate in the environment via atmospheric deposition, aquatic transport, and terrestrial pathways, eventually settling in soil and sediments. Once these metals become bioavailable, they pose significant ecological and toxicological risks. Upon exposure, plants absorb them, leading to harmful agronomic, physiological, and biochemical effects. The present study aims to assess the toxicological effects of mercury on the biochemical alterations in Murraya koenigii (curry leaves) plants. M. koenigii plants were assigned to four groups: Group 1 (control) in uncontaminated soil, and Groups 2, 3, and 4 exposed to 50 mg, 100 mg, and 200 mg of Hg, respectively. All plants were kept under controlled environmental conditions to promote optimal growth. The results revealed that elevated mercury concentrations significantly impaired critical growth parameters, including seed germination, root and shoot length, fresh and dry weight, and vigour index, all of which reflect suppressed plant growth and productivity. Biochemical analysis further demonstrated substantial reductions in primary metabolites, such as carbohydrates and proteins, with the most pronounced decreases observed at higher mercury concentrations. These alterations suggest that Hg-induced oxidative stress causes cellular damage, disruption of nutrient assimilation, and disturbances in enzyme activity. Additionally, significant reductions in chlorophyll a, chlorophyll b, and total chlorophyll content were observed, further indicating impaired photosynthetic capacity. Overall, the findings underscore the detrimental effects of mercury on plant metabolic processes, highlighting its potential to cause long-term growth inhibition and metabolic dysfunction, with broader implications for plant productivity, nutrient cycling, and ecosystem health.
Keywords
References
- Abdul-Baki, A. A., & Anderson, J. D. (1973). Vigor Determination in Soybean Seed by Multiple Criteria. Crop Science, 13, 630-633. http://dx.doi.org/10.2135/cropsci1973.0011183X001300060013x [Google Scholar]
- Al-Khateeb, W. M., Muhaidat, R. M., Odat, N., Sawaie, A., Lahham, J., & ElOqlah, A. (2010). Interactive effects of salinity, light and temperature on seed germination of Zygophyllum simplex L. (Zygophyllaceae) in Jordan. International Journal of Integrative Biology, 10(1): 9. [Google Scholar]
- Angon, P. B., Islam, M. S., Kc, S, Das, A., Anjum, N, Poudel, A., & Suchi, S. A. (2024). Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon, 10(7), e28357. https://doi.org/10.1016/j.heliyon.2024.e28357 [Google Scholar]
- Anjitha K. S., Sameena, P. P., & Puthur J. T. (2021). Functional aspects of plant secondary metabolites in metal stress tolerance and their importance in pharmacology. Plant Stress, 2,100038. https://doi.org/10.1016/j.stress.2021.100038 [Google Scholar]
- Aponte, H., Meli, P., Butler, B., Paolini, J., Matus, F., Merino, C., Cornejo, P., Kuzyakov, Y., Li, J, Yu, H, & Luan, Y. (2015). Meta-analysis of heavy metal effects on soil enzyme activities International Journal of Environmental Research and Public Health, 737, 14958-73. https://doi.org/10.1016/j.scitotenv.2020.139744 [Google Scholar]
- Arnon, D. (1949). Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-15. https://doi.org/10.1104/pp.24.1.1 [Google Scholar]
- Bae, J., Mercier, G., Watson, A. K., & Benoit, D. L. (2014). Seed Germination Test for Heavy Metal Phytotoxicity Assessment. Canadian Journal of Plant Science, 94, 1519-1521. https://doi.org/10.4141/cjps-2014-018 [Google Scholar]
- Bahira, S., Behera, S., & Puhan, P. (2018). Phytoremediation of chromium by chickpea (Ciecer arietinum L.) and its toxic effect. Remarking An Analisation, 3(1), 80-85. [Google Scholar]
- Bekim, G., Liridon, B., Rame, V., & Metin, T. (2024). Chlorophyll biosynthesis suppression, oxidative level and cell cycle arrest caused by Ni, Cr and Pb stress in maize exposed to treated soil from the Ferronikel smelter in Drenas, Kosovo. Plant Stress, 11, 100379. https://doi.org/10.1016/j.stress.2024.100379 [Google Scholar]
- Birari, R., Javia, V., & Bhutani, K.K. (2010). Antiobesity and lipid lowering effects of Murraya koenigii (L.) Spreng leaves extracts and mahanimbine on high fat diet induced obese rats. Fitoterapia, 81(8), 1129-33. https://doi.org/10.1016/j.fitote.2010.07.013 [Google Scholar]
- Cavallini, A., Natali, L., Durante, M., & Maserti, B. (1999). Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. Science of the Total Environment, 243-244, 119–127. https://doi.org/10.1016/S0048-9697(99)00367-8 [Google Scholar]
- Chen, Y. E., Wu, N., Zhang, Z. W., Yuan, M., & Yuan, S. (2019). Perspective of monitoring heavy metals by moss visible chlorophyll fluorescence parameters. Frontiers in Plant Science. 10, 1-10. https://doi.org/10.3389/fpls.2019.00035 [Google Scholar]
- Cheng, X., Liu, X., Liu, F., Yang, Y., & Kou, T. (2024). Facing Heavy Metal Stress, What Are the Positive Responses of Melatonin in Plants: A Review. Agronomy, 14(9), 2094. https://doi.org/10.3390/agronomy14092094 [Google Scholar]
- Elina, M., Arnab, K. G., Debosree, G., & Mukherjeea D. (2012). Protective effect of aqueous Curry leaf (Murraya koenigii) extract against cadmium-induced oxidative stress in rat heart. Food and Chemical Toxicology, 50(5), 1340-1353. https://doi.org/10.1016/j.fct.2012.01.048 [Google Scholar]
- Fraire-Velazquez, S., & Emmanuel, V. (2013). Abiotic stress in plants and metabolic responses. In: Vahdati K, Leslie C (eds) Abiotic stress - plant responses and applications in agriculture. London: InTech, pp. 13. https://doi.org/10.5772/54859 [Google Scholar]
- Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Micro-biology, 156, 609-643. https://doi.org/10.1099/mic.0.037143-0 [Google Scholar]
- Ghimire, A., & Magar, N. (2018). Thin Layer Drying Kinetics Modelling of Curry Leaves (Murraya koenigii L.) in Cabinet Dryer. Himalayan Journal of Science and Technology, 2, 53-58. https://doi.org/10.3126/hijost.v2i0.25844 [Google Scholar]
- Ghori, N. H, Ghori, T., Hayat, M. Q, Imadi, S.R., Gul, A., Altay, & Ozturk, V. M. (2019). Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 16, 1807-1828. https://doi.org/10.1007/s13762-019-02215-8 [Google Scholar]
- Godzik, B. (1993). Heavy metals content in plants from zinc dumps and reference area. Polish Botanical Studies, 5, 113-132. [Google Scholar]
- Gupta, S., George, M., Singhal, M., Sharma, G.N., & Grag, V. (2010). Leaves extract of Murraya koenigii Linn for anti-inflammatory and analgesic activity in animal models. Journal of Advanced Pharmaceutical Technology and Research, 1(1), 68-77. [Google Scholar]
- Hafeez, A., Rasheed, R., Ashraf, M. A., Qureshi, F .F., Hussain, I., & Iqbal, M. (2023). Effect of heavy metals on growth, physiological and biochemical responses of plants. In Plants and Their Interaction to Environmental Pollution, pp. 139-159. https://doi.org/10.1016/b978-0-323-99978-6.00006-6 [Google Scholar]
- Hasan, S. A., Fariduddin, B. & Ali, S. (2009). Hayat and A. Ahmad: Cadmium: Toxicity and tolerance in plants. Journal of Environmental Biology, 30, 165-174. [Google Scholar]
- Hedge, J. E, & Hofreiter, B. T. (1962). In Carbohydrate chemistry 17 (Eds Whistler RL and Be Miller JN). Academic press. New York. [Google Scholar]
- Hurmat R. S., & Bansal, G. (2020). Does abiotic stresses enhance the production of secondary metabolites? A review. The Pharma Innovation Journal, 9(1), 412-422. https://doi.org/10.22271/tpi.2020.v9.i1g.4315 [Google Scholar]
- Huybrechts, M., Hendrix, S., Bertels, J., Beemster, G. T. S., Vandamme, D., & Ann Cuypers, A. (2020). Spatial analysis of the rice leaf growth zone under controlled and cadmium-exposed conditions. Environmental and Experimental Botany, 177, 104120. https://doi.org/10.1016/j.envexpbot.2020.104120 [Google Scholar]
- Igara, C. E., Omoboyowa, D. A., Ahuchaogu, A. A., Orji, N. U., & Ndukwe, M. K. (2016). Phytochemical and nutritional profile of Murraya koenigii (Linn) Spreng leaf. Journal of Pharmacognosy and Phytochemistry, 5(5), 7-9. [Google Scholar]
- Israr, M., Sahi, S., Datta, R., & Sarkar D. (2006). Bioaccumulation and physiological effects of mercury in Sesbania drummondii, Chemosphere. 65(4), 591–598. https://doi.org/10.1016/j.chemosphere.2006.02.016 [Google Scholar]
- Jain, V., Momin, M., & Laddha, K. J. (2012). Murraya Koenigii: An Updated Review. International Journal of Ayurvedic and Herbal Medicine, 2(4), 607-627. [Google Scholar]
- Kim, R. Y., Yoon, J. K., Kim, T. S., Yang, J. E., Owens, G., & Kim, K. R. (2015). Bioavailability of heavy metals in soils: Definitions and practical implementation-A critical review. Environmental Geochemistry and Health, 37, 1041. https://doi.org/10.1007/s10653-015-9695-y [Google Scholar]
- Kumar, V., Suthar, S., Bandyopadhyay, A., Tekale, S., & Dhawan, S. (2012). A Review on Traditional Indian Folk Medicinal Herb: Murraya koenigii. World Journal of Pharmacy and Pharmaceutical Sciences, 262(1), 405. [Google Scholar]
- Lehmann M., Laxa M., Sweetlove L. J., Fernie A. R., & Obata, T. (2012). Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress. Metabolomics. 8, 143-153. https://doi.org/10.1007/s11306-011-0296-1 [Google Scholar]
- Liu, Y., & Wiren, N. (2022). Integration of nutrient and water availabilities via auxin into the root developmental program. Current Opinion in Plant Biology, 65, 102117. https://doi.org/10.1016/j.pbi.2021.102117 [Google Scholar]
- Lodenius, M. (2013). Use of plants for biomonitoring of airborne mercury in contaminated areas. Environmental Research, 125, 113-123. https://doi.org/10.1016/j.envres.2012.10.014 [Google Scholar]
- Lokhande, V. H., Patade, V. Y., Srivastava, S., Suprasanna, P., Shrivastava, M., & Awasthi, G. (2020). Copper accumulation and biochemical responses of Sesuvium portulacastrum (L.). Materials Today: Proceedings, 31, 679-684. https://doi.org/10.1016/j.matpr.2020.07.117 [Google Scholar]
- Lowry, O. H., Roseborough, N. J., Farr, A. L., & Randall, R. L. (1951). Protein measurement with Folin-phenol reagent. Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6 [Google Scholar]
- Manara, A. (2012). Plant Responses to heavy metal toxicity. In Plants and Heavy metals. pp. 27-53. https://doi.org/10.1007/978-94-007-4441-7_2 [Google Scholar]
- Moosavi, S. A., Gharineh, M. H., Afshari, R. T., & Ebrahimi, A. (2012). Effects of Some Heavy Metals on Seed Germination Characteristics of Canola (Barassicanapus), Wheat (Triticumaestivum) and Safflower (Carthamustinctorious) to Evaluate Phytoremediation Potential of These Crops. Journal of Agricultural science, 4(9), 11-19. https://doi.org/10.5539/jas.v4n9p11 [Google Scholar]
- Nguyen, T. Q., Sesin, V., Kisiala, A., & Neil Emery, R. J. (2020). Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. Environmental Toxicology and Chemistry, 40(1), 7-22. https://doi.org/10.1002/etc.4909. [Google Scholar]
- Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., & Streets, D.G. (2010). Global Mercury Emissions to the Atmosphere from Anthropogenic and Natural Sources. Atmospheric Chemistry and Physics, 10, 5951–5964. https://doi.org/10.5194/acp-10-5951-2010 [Google Scholar]
- Rageeb, M. D., Usman, M. D., & Barhate, S. D. (2012). Phytochemical evaluation and effect of antipyretic activity on Murraya koenigii Spreng. Leaves extract. International Journal of Pharmaceutical and Chemical Sciences. 1(1), 231-236. [Google Scholar]
- Rashid, A., Schutte, B. J., Ulery, A., Deyholos, M. K., Sanogo, Lehnhoff S. E. A., & Beck L. (2023). Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy, 13(6): 1521. https://doi.org/10.3390/agronomy13061521 [Google Scholar]
- Rillig, M. C., Ryo, M., Lehmann, A., Aguilar-Trigueros, C. A., Buchert, S., Wulf, A., Iwasaki, A., Roy, J., & Yang, G. (2019). The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366(6467), 886-890. https://doi.org/10.1126/science.aay2832 [Google Scholar]
- Sandalio, L. M., Dalurzo, H. C., Gomez, M., Romero-Puertas, M. C., & Del Rio, L. A. (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 522, 115-126. https://doi.org/10.1093/jexbot/52.364.2115 [Google Scholar]
- Shao, D. D., Wu, S. C., Liang, P., Kang, Y., Fu, W. J., Zhao, K. L., Cao, Z. H. & Wong, M. H. (2012). A human health risk assessment of mercury species in soil and food around compact fluorescent lamp factories in Zhejiang Province, PR China. Journal of Hazardous Materials, 221-222, 28-34. https://doi.org/10.1016/j.jhazmat.2012.03.061 [Google Scholar]
- Sharma, A., Sharma, A., & Arya, R. K. (2015). Removal of Mercury (II) from Aqueous Solution: A Review of Recent Work. Separation Science and Technology, 50, 1310-1320. https://doi.org/10.1080/01496395.2014.968261 [Google Scholar]
- Siddiqui, M. M., Abbasi, B. H., Ahmad, N., Ali, M., & Mahmood, T. (2012). Toxic effects of heavy metals (Cd, Cr and Pb) on seed germination and growth and DPPH-scavenging activity in Brassica rapa var. turnip. Toxicology and Industrial Health, 30(3), 238-249. https://doi.org/10.1177/0748233712452605 [Google Scholar]
- Singh, A., Khanna, K., Kour, J., Dhiman, S., Bhardwaj, T., Devi, K., Sharma, N., Kumar, P., Kapoor, N., & Sharma, P. (2023). Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere, 319, 137917. https://doi.org/10.1016/j.chemosphere.2023.137917 [Google Scholar]
- Soldo, D., & Behra, R. (2000). Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver. Aquatic Toxicology, 47, 181-189. https://doi.org/10.1016/S0166-445X(99)00020-X [Google Scholar]
- Tachibana, Y., Kikuzaki, H., Lajis, N. H., & Nakatani, N. (2001). Anti Oxidative Activity of Carbazoles Form Murraya koenigii Leaves. Journal of Agricultural and Food Chemistry, 49, 5589-5594. https://doi.org/10.1021/jf010621r [Google Scholar]
- Tamas, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T., & Christen, P. (2014). Heavy Metals and Metalloids as a Cause for Protein Misfolding and Aggregation. Biomolecules, 4(1), 252-267. https://doi.org/10.3390/biom4010252 [Google Scholar]
- Tembhurne, S. V., & Sakarkar, D. M. (2009). Hypoglycemic effects of fruit juice of Murraya koenigii (L) in alloxan induced diabetic mice. International Journal of Pharmtech Research, 1(4), 1589-1593. [Google Scholar]
- Triantaphylides, C., & Havaux, M. (2009). Singlet oxygen in plants: production, detoxification and signaling. Trends in Plant Science, 14(4), 219-228. https://doi.org/10.1016/j.tplants.2009.01.008 [Google Scholar]
- Verma, S. (2018). Overview Study on Murraya Koenigii (Mitha Neem): Rutaceae. Journal of Drug Delivery and Therapeutics, 8(4), 90-92. https://doi.org/10.22270/jddt.v8i4.1795 [Google Scholar]
- Vijay, M., Arun Kumarasarangan, G., & Vimala, P. (2025). Tox.icological effects of Mercury in Radish (Raphanus Sativus) plants – Biochemical Analysis. Scholars Academic Journal of Pharmacy, 14(1), 1-8. https://doi.org/10.36347/sajp.2025.v14i01.001 [Google Scholar]
- Vijay, M., Partheepan, I, & Sangeetha, R. (2024). Effects of Ferrous Iron Toxicity on Growth, Biochemical Alterations and Enzymatic Antioxidant Status in Capsicum annuum L. Scholars Academic Journal of Biosciences, 12(11), 391-397. https://doi.org/10.36347/sajb.2024.v12i11.002 [Google Scholar]
- Wu X., Cobbina S. J., Mao G., Xu H., Zhang Z., & Yang L. (2016). A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research, 23, 8244-8259. https://doi.org/10.1007/s11356-016-6333-x [Google Scholar]
- Zhang, C., Nie, S., Liang, J., Zeng, G., Wu, H., Hua, S., Liu, J., Yuan, Y., Xiao, H., & Deng, L., (2016). Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Science of the Total Environment. 557-558, 785-790. [Google Scholar]
- Zhang, Q., Guo, W., Wang, B., Feng, Y., Han, L., Zhang, C., Xie, H., Liu, X., & Feng, Y. (2023). Influences of microplastics types and size on soil properties and cadmium adsorption in paddy soil after one rice season. Resources, Environment and Sustainability, 11, 100102. https://doi.org/10.1016/j.resenv.2022.100102 [Google Scholar]

