Biochar as a Versatile Resource for Achieving Sustainability in Agri-food Chains

Open Access
Download PDF
AgroEnvironmental Sustainability
Sonika Kumari , Ivan Širić , Sami Abou Fayssal

Abstract

The agriculture sector generates a significant quantity of waste. These wastes, when mismanaged, can cause environmental issues like air, water, and soil pollution. Thus, the upcycling of agricultural wastes especially for bioenergy production would be highly advantageous. Biofuels, including biochar, biogas, biodiesel, and bioethanol, are eco-friendly fuels owing a significant contribution to the bioenergy industry. Biochar, a carbon-rich substance prepared from a wide range of feedstocks, can be produced from agricultural wastes via pyrolysis and has numerous applications. When added to soil, biochar enhances soil fertility by acting as a soil conditioner. It can also be used to purify air and wastewater and/or used for carbon sequestering, in the textile and construction industries. Moreover, biochar can also be used in the food products such as charcoal-based ice cream, and cookies besides being an animal feed improver. Furthermore, biochar has potential applications in the cosmetic industry and can address issues such as climate change, energy shortages, and food security. The use of agricultural wastes for biochar production can be a tool for low-cost bioenergy production, which could improve the financial status of local farmers. The current review emphasizes the potential of biochar as a versatile resource for achieving sustainability in agri-food chains by recycling generated waste.

Keywords

agricultural waste biochar bioenergy climate change soil pollution

References

  1. Abas, N., Kalair, A., & Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69, 31-49. https://doi.org/10.1016/j.futures.2015.03.003 [Google Scholar]
  2. Akinyemi, B., Omoniyi, T. E., Elemile, O., & Arowofila, O. (2020). Innovative husk-crete building materials from rice chaff and modified cement mortars. Acta Technologica Agriculturae, 23(2), 67-72. https://doi.org/10.2478/ata-2020-0011 [Google Scholar]
  3. Aponte, C., de Groot, W. J., & Wotton, B. M. (2016). Forest fires and climate change: causes, consequences and management options. International Journal of Wild land Fire, 25(8), 1-2. https://doi.org/10.1071/wfv25n8_fo [Google Scholar]
  4. Barrow, C. J. (2012). Biochar: potential for countering land degradation and for improving agriculture. Applied Geography, 34, 21-28. https://doi.org/10.1016/j.apgeog.2011.09.008 [Google Scholar]
  5. Çay, A., Yanık, J., Akduman, Ç., Duman, G., & Ertaş, H. (2020). Application of textile waste derived biochars onto cotton fabric for improved performance and functional properties. Journal of Cleaner Production, 251, 119664. https://doi.org/10.1016/j.jclepro.2019.119664 [Google Scholar]
  6. Cha, J. S., Park, S. H., Jung, S. C., Ryu, C., Jeon, J. K., Shin, M. C., & Park, Y. K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-15. https://doi.org/10.1016/j.jiec.2016.06.002 [Google Scholar]
  7. Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Soil Research, 46(5), 437-444. https://doi.org/10.1071/sr08036 [Google Scholar]
  8. Cheng, B. H., Huang, B. C., Zhang, R., Chen, Y. L., Jiang, S. F., Lu, Y. & Yu, H. Q. (2020). Bio-coal: A renewable and massively producible fuel from lignocellulosic biomass. Science Advances, 6(1), 1-8. https://doi.org/10.1126/sciadv.aay0748 [Google Scholar]
  9. Chu, G. M., Kim, J. H., Kim, H. Y., Ha, J. H., Jung, M. S., Song, Y. & Song, Y. M. (2013). Effects of bamboo charcoal on the growth performance, blood characteristics and noxious gas emission in fattening pigs. Journal of Applied Animal Research, 41(1), 48-55. https://doi.org/10.1080/09712119.2012.738219 [Google Scholar]
  10. Creamer, A. E., Gao, B., & Zhang, M. (2014). Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chemical Engineering Journal, 249, 174-179. https://doi.org/10.1016/j.cej.2014.03.105 [Google Scholar]
  11. Cuthbertson, D., Berardi, U., Briens, C., & Berruti, F. (2019). Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass and bioenergy, 120, 77-83. https://doi.org/10.1016/j.biombioe.2018.11.007 [Google Scholar]
  12. Edmunds, J. L., Worgan, H. J., Dougal, K., Girdwood, S. E., Douglas, J. L., & McEwan, N. R. (2016). In vitro analysis of the effect of supplementation with activated charcoal on the equine hindgut. Journal of Equine Science, 27(2), 49-55. https://doi.org/10.1294/jes.27.49 [Google Scholar]
  13. Gąsior, D., & Tic, W. J. (2017). Application of the biochar-based technologies as the way of realization of the sustainable development strategy. Economic and Environmental Studies, 17(43), 597-611. https://doi.org/10.25167/ees.2017.43.9 [Google Scholar]
  14. Genesio, L., Miglietta, F., Baronti, S., & Vaccari, F. P. (2015). Biochar increases vineyard productivity without affecting grape quality: Results from a four years field experiment in Tuscany. Agriculture, Ecosystems & Environment, 201, 20-25. https://doi.org/10.1016/j.agee.2014.11.021 [Google Scholar]
  15. Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and fertility of soils, 35, 219-230. https://doi.org/10.1007/s00374-002-0466-4 [Google Scholar]
  16. Gupta, D. K., Gupta, C. K., Dubey, R., Fagodiya, R. K., Sharma, G., Noor Mohamed, M. B., & Shukla, A. K. (2020). Role of biochar in carbon sequestration and greenhouse gas mitigation. Biochar applications in agriculture and environment management, 141-165. https://doi.org/10.1007/978-3-030-40997-5_7 [Google Scholar]
  17. Gwenzi, W., Chaukura, N., Wenga, T., & Mtisi, M. (2021). Biochars as media for air pollution control systems: Contaminant removal, applications and future research directions. Science of the Total Environment, 753, 142249. https://doi.org/10.1016/j.scitotenv.2020.142249 [Google Scholar]
  18. Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T. & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2, 421-438. https://doi.org/10.1007/s42773-020-00067-x [Google Scholar]
  19. Jain, N., Bhatia, A., & Pathak, H. (2014). Emission of air pollutants from crop residue burning in India. Aerosol and Air Quality Research, 14(1), 422-430. https://doi.org/10.4209/aaqr.2013.01.0031 [Google Scholar]
  20. Jatav, H. S., Singh, S. K., Jatav, S. S., Rajput, V. D., Parihar, M., Mahawer, S. K., & Singhal, R. K. (2020). Importance of biochar in agriculture and its consequence. In: Applications of Biochar for Environmental Safety, IntechOpen, pp. 109. https://doi.org/10.5772/intechopen.93049 [Google Scholar]
  21. Jechan, L., Ki-Hyun, K., & Eilhann, K. (2017). Biochar as a Catalyst. Renew. Sustainable Energy Rev, 77, 70-79. [Google Scholar]
  22. Jiang, Z., Xiao, T., Kuznetsov, V. Á., & Edwards, P. Á. (2010). Turning carbon dioxide into fuel. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1923), 3343-3364. https://doi.org/10.1098/rsta.2010.0119 [Google Scholar]
  23. Kana, J. R., Teguia, A., Mungfu, B. M., & Tchoumboue, J. (2011). Growth performance and carcass characteristics of broiler chickens fed diets supplemented with graded levels of charcoal from maize cob or seed of Canarium schweinfurthii Engl. Tropical Animal Health and Production, 43, 51-56. [Google Scholar]
  24. Khan, A., Szulejko, J. E., Samaddar, P., Kim, K. H., Liu, B., Maitlo, H. A., & Ok, Y. S. (2019). The potential of biochar as sorptive media for removal of hazardous benzene in air. Chemical Engineering Journal, 361, 1576-1585. https://doi.org/10.1016/j.cej.2018.10.193 [Google Scholar]
  25. Khanna, I., Khare, M., Gargava, P., & Khan, A. A. (2018). Effect of PM2. 5 chemical constituents on atmospheric visibility impairment. Journal of the Air & Waste Management Association, 68(5), 430-437. https://doi/10.1080/10962247.2018.1425772 [Google Scholar]
  26. Lalander, C., Dalahmeh, S., Jönsson, H., & Vinnerås, B. (2013). Hygienic quality of artificial greywater subjected to aerobic treatment: a comparison of three filter media at increasing organic loading rates. Environmental Technology, 34(18), 2657-2662. https://doi.org/10.1080/09593330.2013.783603 [Google Scholar]
  27. Lan, T. T., Preston, T. R., & Leng, R. A. (2016). Feeding biochar or charcoal increased the growth rate of striped catfish (Pangasius hypophthalmus) and improved water quality. Livestock Research for Rural Development, 28(5), 84. [Google Scholar]
  28. Lee, J., Kim, K. H., & Kwon, E. E. (2017a). Biochar as a catalyst. Renewable and Sustainable Energy Reviews, 77, 70-79. https://doi.org/10.1016/j.rser.2017.04.002 [Google Scholar]
  29. Lee, J., Yang, X., Cho, S. H., Kim, J. K., Lee, S. S., Tsang, D. C. & Kwon, E. E. (2017b). Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Applied energy, 185, 214-222. https://doi.org/10.1016/j.apenergy.2016.10.092 [Google Scholar]
  30. Li, M., Zheng, Y., Chen, Y., & Zhu, X. (2014). Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresource technology, 154, 345-348. https://doi.org/10.1016/j.biortech.2013.12.070 [Google Scholar]
  31. Lin, C. M., & Chang, C. W. (2008). Production of thermal insulation composites containing bamboo charcoal. Textile Research Journal, 78(7), 555-560. https://doi.org/10.1177/0040517507085397 [Google Scholar]
  32. Liu, Z., Chen, X., Jing, Y., Li, Q., Zhang, J., & Huang, Q. (2014). Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena, 123, 45-51. https://doi.org/10.1016/j.catena.2014.07.005 [Google Scholar]
  33. Mabe, L. T., Su, S., Tang, D., Zhu, W., Wang, S., & Dong, Z. (2018). The effect of dietary bamboo charcoal supplementation on growth and serum biochemical parameters of juvenile common carp (Cyprinus carpio L.). Aquaculture Research, 49(3), 1142-1152. https://doi.org/10.1111/are.13564 [Google Scholar]
  34. Macdonald, L. M., Farrell, M., Zwieten, L. V., & Krull, E. S. (2014). Plant growth responses to biochar addition: an Australian soils perspective. Biology and Fertility of Soils, 50(7), 1035-1045. https://doi.org/10.1007/s00374-014-0921-z [Google Scholar]
  35. Man, K. Y., Chow, K. L., Man, Y. B., Mo, W. Y., & Wong, M. H. (2021). Use of biochar as feed supplements for animal farming. Critical Reviews in Environmental Science and Technology, 51(2), 187-217. https://doi.org/10.1080/10643389.2020.1721980 [Google Scholar]
  36. Matovic, D. (2011). Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy, 36(4), 2011-2016. https://doi.org/10.1016/j.energy.2010.09.031 [Google Scholar]
  37. McFarlane, Z. D., Myer, P. R., Cope, E. R., Evans, N. D., Bone, T. C., Bliss, B. E., & Mulliniks, J. T. (2017). Effect of biochar type and size on in vitro rumen fermentation of orchard grass hay, Agricultural Sciences, 8, 316-325. https://doi.org/10.4236/as.2017.84023 [Google Scholar]
  38. Michalak, I., Baśladyńska, S., Mokrzycki, J., & Rutkowski, P. (2019). Biochar from a freshwater macroalga as a potential biosorbent for wastewater treatment. Water, 11(7), 1390. https://doi.org/10.3390/w11071390 [Google Scholar]
  39. Mui, N. T., & Ledin, I. (2006). Effect of method of processing foliage of Acacia mangium and inclusion of bamboo charcoal in the diet on performance of growing goats. Animal Feed Science and Technology, 130(3-4), 242-256. https://doi.org/10.1016/j.anifeedsci.2006.01.008 [Google Scholar]
  40. Narzari, R., Bordoloi, N., Chutia, R. S., Borkotoki, B., Gogoi, N., Bora, A., & Kataki, R. (2015). Biochar: an overview on its production, properties and potential benefits. Biology, Biotechnology and Sustainable Development, 1(1), 13-40. [Google Scholar]
  41. Ouda, O. K., Raza, S. A., Al-Waked, R., Al-Asad, J. F., & Nizami, A. S. (2017). Waste-to-energy potential in the Western Province of Saudi Arabia. Journal of King Saud University-Engineering Sciences, 29(3), 212-220. https://doi.org/10.1016/j.jksues.2015.02.002 [Google Scholar]
  42. Ozsoy, H. D., & van Leeuwen, J. H. (2010). Removal of color from fruit candy waste by activated carbon adsorption. Journal of Food Engineering, 101(1), 106-112. https://doi.org/10.1016/j.jfoodeng.2010.06.018 [Google Scholar]
  43. Phongphanith, S., & Preston, T. R. (2018). Effect of rice-wine distillers’ byproduct and biochar on growth performance and methane emissions in local “Yellow” cattle fed ensiled cassava root, urea, cassava foliage and rice straw. Livestock Research for Rural Development, 28, 178. https://doi.org/10.1016/j.livsci.2005.12.003 [Google Scholar]
  44. Qambrani, N. A., Rahman, M. M., Won, S., Shim, S., & Ra, C. (2017). Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 79, 255-273. https://doi.org/10.1016/j.rser.2017.05.057 [Google Scholar]
  45. Rodionova, M. V., Poudyal, R. S., Tiwari, I., Voloshin, R. A., Zharmukhamedov, S. K., Nam, H. G. & Allakhverdiev, S. I. (2017). Biofuel production: challenges and opportunities. International Journal of Hydrogen Energy, 42(12), 8450-846. https://doi.org/10.1016/j.ijhydene.2016.11.125. [Google Scholar]
  46. Rogovska, N., Laird, D. A., Rathke, S. J., & Karlen, D. L. (2014). Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma, 230, 340-347. https://doi.org/10.1016/j.geoderma.2014.04.009 [Google Scholar]
  47. Ruttanavut, J., Yamauchi, K., Goto, H., & Erikawa, T. (2009). Effects of dietary bamboo charcoal powder including vinegar liquid on growth performance and histological intestinal change in Aigamo ducks. International Journal of Poultry Science, 8(3), 229-236. https://doi.org/10.3923/ijps.2009.229.236 [Google Scholar]
  48. Schmidt, H. P. (2013). Novel uses of biochar – a key technology for the future of the planet. Ithaka Institute for Biotic Carbon Cycling, Zürich. [Google Scholar]
  49. Schmidt, H. P., Wilson, K., & Kammann, C. (2017). Using biochar in animal farming to recycle nutrients and reduce greenhouse gas emissions. In EGU General Assembly Conference Abstracts, p. 5719. [Google Scholar]
  50. Singh, B. P., Cowie, A. L., & Smernik, R. J. (2012). Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environmental Science & Technology, 46(21), 11770-11778. https://doi.org/10.1021/es302545b [Google Scholar]
  51. Singh, C., Tiwari, S., Boudh, S., & Singh, J. S. (2017). Biochar application in management of paddy crop production and methane mitigation. In: Agro-Environmental Sustainability: Volume 2: Managing Environmental Pollution, pp. 123-145. https://doi.org/10.1007/978-3-319-49727-3_7 [Google Scholar]
  52. Singh, R., Singh, P., Singh, H., & Raghubanshi, A. S. (2019). Impact of sole and combined application of biochar, organic and chemical fertilizers on wheat crop yield and water productivity in a dry tropical agro-ecosystem. Biochar, 1, 229-235. https://doi.org/10.1007/s42773-019-00013-6 [Google Scholar]
  53. Širić, I., Eid, E. M., Taher, M. A., El-Morsy, M. H. E., Osman, H. E. M., Kumar, P., Adelodun, B., Abou Fayssal, S., Mioč, B., Andabaka, Ž., Goala, M., Kumari, S., Bachheti, A., Choi, K. S., & Kumar, V. (2023). Combined Use of Spent Mushroom Substrate Biochar and PGPR Improves Growth, Yield, and Biochemical Response of Cauliflower (Brassica oleracea var. botrytis): A Preliminary Study on Greenhouse Cultivation. Horticulturae, 8, 830. https://doi.org/10.3390/horticulturae8090830 [Google Scholar]
  54. Song, X., Ning, P., Tang, L., Sun, X., Mei, Y., Wang, C., & Li, K. (2017). The kinetic model of simultaneous catalytic hydrolysis of carbon disulfide and carbonyl sulfide over modified walnut shell biochar. Journal of Chemical Engineering of Japan, 50(2), 115-121. https://doi.org/10.1252/jcej.16we199 [Google Scholar]
  55. Sorrenti, G., Masiello, C. A., & Toselli, M. (2016). Biochar interferes with kiwifruit Fe-nutrition in calcareous soil. Geoderma, 272, 10-19. https://doi.org/10.1016/j.geoderma.2016.02.017 [Google Scholar]
  56. Srinivasarao, C., Kundu, S., Ramachandrappa, B. K., Reddy, S., Lal, R., Venkateswarlu, B., & Naik, R. P. (2014). Potassium release characteristics, potassium balance, and fingermillet (Eleusine coracana G.) yield sustainability in a 27-year long experiment on an Alfisol in the semi-arid tropical India. Plant and Soil, 374, 315-330. https://doi.org/10.1007/s11104-013-1877-8 [Google Scholar]
  57. Suman, S. (2020, September). Conversion of solid biomass into biochar: Act as a green, eco-friendly energy source and a substitute of fossil fuel inputs. Proceedings MDPI, 58(1), 207-220. https://doi.org/10.3390/wef-06916 [Google Scholar]
  58. Suman, S., & Gautam, S. (2018). Biochar derived from agricultural waste biomass act as a clean and alternative energy source of fossil fuel inputs. Energy Systems and Environment, 207, 1-14. https://doi.org/10.5772/intechopen.73833 [Google Scholar]
  59. Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19, 191-215. https://doi.org/10.1007/s11157-020-09523-3 [Google Scholar]
  60. Toth, J. D., Dou, Z., Guo, M., He, Z., Uchimiya, S. M. (2016). Use and impact of biochar and charcoal in animal production systems. In: Agricultural and Environmental Applications of Biochar: Advances and Barriers, 63, 199-224. SSSA Special Publication, WI, USA. https://doi.org/10.2136/sssaspecpub63.2014.0043.5 [Google Scholar]
  61. Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27(2), 205-212. https://doi.org/10.1111/j.1475-2743.2011.00340.x [Google Scholar]
  62. Vithanage, M., Rajapaksha, A. U., Ahmad, M., Shinogi, Y., Kim, K. H., Kim, G., & Ok, Y. S. (2016). Biochar for waste management and environmental sustainability. In Sustainable Solid Waste Management (pp. 273-292). American Society of Civil Engineers (ASCE). https://doi.org/10.1061/9780784414101.ch10 [Google Scholar]
  63. Waqas, M., Aburiazaiza, A. S., Miandad, R., Rehan, M., Barakat, M. A., & Nizami, A. S. (2018). Development of biochar as fuel and catalyst in energy recovery technologies. Journal of Cleaner Production, 188, 477-488. https://doi.org/10.1016/j.jclepro.2018.04.017 [Google Scholar]
  64. Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240-261, https://doi.org/10.1016/j.fuel.2017.12.054 [Google Scholar]
  65. Wijitkosum, S., & Jiwnok, P. (2019). Elemental composition of biochar obtained from agricultural waste for soil amendment and carbon sequestration. Applied Sciences, 9(19), 3980. https://doi.org/10.3390/app9193980 [Google Scholar]
  66. Wu, H., Dong, X., & Liu, H. (2018). Evaluating fluorescent dissolved organic matter released from wetland-plant derived biochar: effects of extracting solutions. Chemosphere, 212, 638-644, https://doi.org/10.1016/j.chemosphere.2018.08.110 [Google Scholar]
  67. Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM 2.5 on the human respiratory system. Journal of Thoracic Disease, 8(1), E69. [Google Scholar]
  68. Yang, F., Zhao, L., Gao, B., Xu, X., & Cao, X. (2016). The interfacial behavior between biochar and soil minerals and its effect on biochar stability. Environmental Science & Technology, 50(5), 2264-2271, https://doi.org/10.1021/acs.est.5b03656 [Google Scholar]
  69. Yang, Y., Tang, R., Qiu, H., Lai, P. C., Wong, P., Thach, T, Q., & Barratt, B. (2018). Long term exposure to air pollution and mortality in an elderly cohort in Hong Kong. Environmental International, 117, 99-106. [Google Scholar]
  70. Yoo, J. H., Ji, S. C., & Jeong, G. S. (2005). Effect of dietary charcoal and wood vinegar mixture (CV82) on body composition of Olive Flounder Paralichthy salivaceus. Journal of the World Aquaculture Society, 36(2), 203-208. https://doi.org/10.1111/j.1749-7345.2005.tb00386.x [Google Scholar]
  71. You, S., Ok, Y. S., Chen, S. S., Tsang, D. C., Kwon, E. E., Lee, J., & Wang, C. H. (2017). A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresource Technology, 246, 242-253. https://doi.org/10.1016/j.biortech.2017.06.177 [Google Scholar]
  72. Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488-3497. https://doi.org/10.1016/j.biortech.2010.11.018 [Google Scholar]
  73. Zhou, L., Richard, C., Ferronato, C., Chovelon, J. M., & Sleiman, M. (2018). Investigating the performance of biomass-derived biochars for the removal of gaseous ozone, adsorbed nitrate and aqueous bisphenol A. Chemical Engineering Journal, 334, 2098-2104. https://doi.org/10.1016/j.cej.2017.11.145 [Google Scholar]
  74. Zhou, Y., Liu, X., Xiang, Y., Wang, P., Zhang, J., Zhang, F. & Tang, L. (2017). Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Bioresource Technology, 245, 266-273. https://doi.org/10.1016/j.biortech.2017.08.178 [Google Scholar]

Similar Articles

1-10 of 64

You may also start an advanced similarity search for this article.