Assessment of Soil Fertility Status in Rupani Rural Municipality, Saptari, Nepal

Open Access
Download PDF
AgroEnvironmental Sustainability
Honey Raj Mandal , Sunny Kumar Shah , Biplov Oli , Shambhu Katel , Shubh Pravat Singh Yadav , Krishna Raj Pant , Baibhav Sharma Lamshal , Sujata Kattel , Sumit Sah , Bishnu Yadav

Abstract

As soil fertility is one of the most important factors for soil productivity, soil fertility management is important for sustainable soil management. This study was conducted to determine the soil fertility status of Rupani Rural Municipality, Saptari, Nepal. A total of 60 soil samples were collected randomly from 0-30 cm depth. The exact location of the samples was recorded using a handheld GPS device. All collected samples were analyzed at a regional soil testing laboratory in Saptari to determine their pH, soil texture, nitrogen, phosphorus, potassium, and organic matter status. In addition, fertility status maps were prepared using ArcGIS 10.8 software. The study area consists mainly of 51.66% clay and 18.33% sandy loam soils. The soil pH ranged from highly acidic to slightly alkaline, with pH values ranging from 4.5 to 8.0. Soil organic matter (0.42-3.21%), nitrogen (0.02-0.16%), available phosphorus (40.1-282.35 kg P2O5/ha) and exchangeable potassium (64.8-729.6 kg K2O/ha) are present in the soil with the status of low to high in the study area. In order to improve crop potential and maintain soil nutrient status through the use of site-specific fertilizers, a reduction in the use of chemical fertilizers and various sustainable soil management practices were adopted. This research provides valuable information to policymakers, farmers, and agricultural stakeholders, facilitating evidence-based decision-making for agricultural development and food security in Rupani Rural Municipality, Saptari, Nepal.

Keywords

ArcGIS nutrients Saptari soil fertility soil pollution

References

  1. Barman, D., Saha, R., Bhowmick, T., Bagui, A., & Dutta, G. (2022). Role of GIS, remote sensing and agro advisory in conservation agriculture. In Conservation Agriculture and Climate Change, pp. 233-248. CRC Press. https://doi.org/10.1201/9781003364665 [Google Scholar]
  2. Becker, J., Pabst, H., Mnyonga, J., & Kuzyakov, Y. (2015). Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro. Biogeosciences, 12(19), 5635-5646. https://bg.copernicus.org/articles/12/5635/2015/ [Google Scholar]
  3. Bouyoucos, G. J. (1962). Hydrometer method improved for making particle-size analysis of soils. Agronomy Journal, 53, 464– 465. https://doi.org/10.2134/agronj1962.00021962005400050028x [Google Scholar]
  4. Bremner, J. M., & Mulvaney, C. S. (1982) Nitrogen total. In: Methods of soil analysis. Agron. No. 9, Part 2: Chemical and microbiological properties, 2nd ed. (A. L. Page, ed). Am Soc Agron, Madison, WI, USA. pp. 595-624. https://cir.nii.ac.jp/crid/1571417125086128256 [Google Scholar]
  5. Brown, S., Schreier, H., & Shah, P. B. (2000). Soil Phosphorus Fertility Degradation: A Geographic Information System‐Based Assessment. Journal of Environmental Quality, 29(4), 1152–1160. https://doi.org/10.2134/jeq2000.00472425002900040016x [Google Scholar]
  6. Buryak, Z., & Marinina, O. (2020). Using GIS technology for identification of agricultural land with an increased risk of erosion. In E3S Web of Conferences, Vol. 176, p. 04007. EDP Sciences. https://doi.org/10.1051/e3sconf/202017604007 [Google Scholar]
  7. Desbiez, A., Matthews, R., Tripathi, B., & Ellis-Jones, J. (2004). Perceptions and assessment of soil fertility by farmers in the mid-hills of Nepal. Agriculture, Ecosystems and Environment, 103(1), 191–206. https://doi.org/10.1016/j.agee.2003.10.003 [Google Scholar]
  8. Gasmi, A., Gomez, C., Chehbouni, A., Dhiba, D., & El Gharous, M. (2022). Using PRISMA hyperspectral satellite imagery and GIS approaches for soil fertility mapping (FertiMap) in northern Morocco. Remote Sensing, 14(16), 4080. https://doi.org/10.3390/rs14164080 [Google Scholar]
  9. Glaser, B., & Lehr, V. I. (2019). Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific Reports, 9(1), 9338. https://doi.org/10.1038/s41598-019-45693-z [Google Scholar]
  10. Gondal, A. H., Hussain, I., Ijaz, A. B., Zafar, A., Ch, B. I., Zafar, H., & Usama, M. (2021). Influence of soil pH and microbes on mineral solubility and plant nutrition: A review. International Journal of Agriculture and Biological Sciences, 5(1), 71-81. [Google Scholar]
  11. Havlin, J., Balster, N., Chapman, S., Ferris, D., Thompson, T., & Smith, T. (2010). Trends in Soil Science Education and Employment. Soil Science Society of America Journal, 74(5), 1429–1432. https://doi.org/10.2136/sssaj2010.0143 [Google Scholar]
  12. Jackson, M. L. (1967). Soil chemical analysis. Prentice Hall of India Pvt. Ltd., New Delhi, India. [Google Scholar]
  13. Khadka, D., Lamichhane, S., Amgain, R., Joshi, S., Shree, P., Kamal, S. A. H., & Ghimire, N. H. (2019). Soil fertility assessment and mapping spatial distribution of Agricultural Research Station, Bijayanagar, Jumla, Nepal. Eurasian Journal of Soil Science, 8(3), 237-248. https://doi.org/10.18393/ejss.566551 [Google Scholar]
  14. Khadka, D., Lamichhane, S., Shrestha, K., Joshi, S., Karna, M., Pant, B. B., & Yadav, S. (2017). Soil Fertility Assessment and Mapping of Agricultural Research Station, Jaubari, Illam, Nepal. International Journal of Environment, 6(3), 46–70. https://doi.org/10.3126/ije.v6i3.18097 [Google Scholar]
  15. Khan, M. Z., Islam, M. R., Salam, A. B. A., & Ray, T. (2021). Spatial variability and geostatistical analysis of soil properties in the diversified cropping regions of Bangladesh using geographic information system techniques. Applied and Environmental Soil Science, 6639180, 1-19, 1-19. https://doi.org/10.1155/2021/6639180 [Google Scholar]
  16. Kuzin, A., & Solovchenko, A. (2021). Essential role of potassium in apple and its implications for management of orchard fertilization. Plants, 10(12), 2624. https://doi.org/10.3390/plants10122624 [Google Scholar]
  17. Mairura, F. S., Mugendi, D. N., Mwanje, J. I., Ramisch, J. J., Mbugua, P. K., & Chianu, J. N. (2007). Integrating scientific and farmers’ evaluation of soil quality indicators in Central Kenya. Geoderma, 139(1–2), 134–143. https://doi.org/10.1016/j.geoderma.2007.01.019 [Google Scholar]
  18. Malla, R., Shrestha, S., Khadka, D., & Bam, C. R. (2020). Soil fertility mapping and assessment of the spatial distribution of Sarlahi District, Nepal. American Journal of Agricultural Science, 7(1), 8-16. [Google Scholar]
  19. Mashud, M. A. A., Uddin, M. H., & Islam, M. S. (2014). Design and implementation of microcontroller based digital soil pH meter. ULAB Journal of Science and Engineering, 5(1), 31-34. [Google Scholar]
  20. Mishra, A. (2016). GPS and GIS Based Soil Fertility Maps of Nayagarh District, Odisha. Annals of Plant and Soil Research, 18(1), 23–28. [Google Scholar]
  21. Oli, B., Lamichhane, S., & Oli, K. (2020). Use of GIS in soil fertility mapping of Rapti Municipality, Chitwan, Nepal. Journal of Agriculture and Applied Biology, 1(2), 64–73. https://doi.org/10.11594/jaab.01.02.04 [Google Scholar]
  22. Olsen, S. R., & Sommers, L. E. (1982) Phosphorus. In: Page, A. L. (ed.), Methods of soil analysis, Agron. No. 9, Part 2: Chemical and microbiological properties, 2nd ed. (A. L. Page, ed). Am Soc Agron, Madison, WI, USA. pp. 403–430. [Google Scholar]
  23. Palaniswami, C., Gopalasundaram, P., & Bhaskaran, A. (2011). Application of GPS and GIS in Sugarcane Agriculture. Sugar Tech, 13(4), 360–365. https://doi.org/10.1007/s12355-011-0098-9. [Google Scholar]
  24. Pasley, H. R., Cairns, J. E., Camberato, J. J., & Vyn, T. J. (2019). Nitrogen fertilizer rate increases plant uptake and soil availability of essential nutrients in continuous maize production in Kenya and Zimbabwe. Nutrient Cycling in Agroecosystems, 115, 373-389. https://doi.org/10.1007/s10705-019-10016-1 [Google Scholar]
  25. Prabhavati, K., Dasog, G. S., Patil, P. L., Sahrawat, K. L., & Wani, S. P. (2015). Soil fertility mapping using GIS in three agro-climatic zones of Belgaum district, Karnataka. Journal of the Indian Society of Soil Science, 63(2), 173-180. http://dx.doi.org/10.5958/0974-0228.2015.00022.5 [Google Scholar]
  26. Rawal, N., Acharya, K. K., Bam, C. R., & Acharya, K. (2018). Soil fertility mapping of different VDCs of Sunsari District, Nepal using GIS. International Journal of Applied Sciences and Biotechnology, 6(2), 142-151. https://doi.org/10.3126/ijasbt.v6i2.20424 [Google Scholar]
  27. Shaji, H., Chandran, V., & Mathew, L. (2021). Organic fertilizers as a route to controlled release of nutrients. In Controlled release fertilizers for sustainable agriculture, pp. 231-245. Academic Press. https://doi.org/10.1016/B978-0-12-819555-0.00013-3 [Google Scholar]
  28. Shayakhmetov, M., Zinich, A., & Gindemit, A. (2019). Soil mapping using geo-information technologies. In International Scientific and Practical Conference “Digital agriculture-development strategy, pp. 156-159. Atlantis Press. https://doi.org/10.2991/ispc-19.2019.35 [Google Scholar]
  29. Shrestha, D. P. (1997). Assessment of soil erosion in the Nepalese Himalaya, a case study in Likhu Khola valley, middle mountain region. Land Husbandry, 2(1), 59–80. [Google Scholar]
  30. Vaidya, S. N., Sherchan, D. P., Tiwari, K. R., Subedi, S., Karki, K. B., Panday, D., & Ojha, R. B. (2021). Soil types, soil classification, and mapping. The Soils of Nepal, 63-90. https://doi.org/10.1007/978-3-030-80999-7_7 [Google Scholar]
  31. Walkey, A. J., & Black, I. A. (1934). Estimation of organic carbon by the chromic titration method. Soil Science, 37, 29-38. [Google Scholar]
  32. Wang, L., Wang, Q., Wei, S., Shao, M., & Li, Y. (2008). Soil desiccation for Loess soils on natural and regrown areas. Forest Ecology and Management, 255(7), 2467–2477. https://doi.org/10.1016/j.foreco.2008.01.006 [Google Scholar]
  33. Wojciech, J. (2009). Use of Village Level Soil Fertility Maps as a Fertilizer Decision Support Tool in the Red and Lateritic Soil Zone of India. In The Proceedings of the International Plant Nutrition Colloquium, XVI, pp. 1–4. https://escholarship.org/uc/item/7642k8hr [Google Scholar]
  34. Xu, Y., George, D. L., Kim, J., Lu, Z., Riley, M., Griffin, T., & de la Fuente, J. (2021). Landslide monitoring and runout hazard assessment by integrating multi-source remote sensing and numerical models: an application to the Gold Basin landslide complex, northern Washington. Landslides, 18(3), 1131–1141. https://doi.org/10.1007/s10346-020-01533-0 [Google Scholar]
  35. Yadav, S. P. S., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., & Oli, B. (2023). Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research, 11, 100498. https://doi.org/10.1016/j.jafr.2023.100498 [Google Scholar]
  36. Yudhana, A., Sulistyo, D., & Mufandi, I. (2021). GIS-based and Naïve Bayes for nitrogen soil mapping in Lendah, Indonesia. Sensing and Bio-Sensing Research, 33, 100435. https://doi.org/10.1016/j.sbsr.2021.100435 [Google Scholar]
  37. Zhang, W. J., & Zhang, X. Y. (2007). A forecast analysis on fertilizers consumption worldwide. Environmental Monitoring and Assessment, 133(1–3), 427–434. https://doi.org/10.1007/s10661-006-9597-7 [Google Scholar]

Similar Articles

1-10 of 29

You may also start an advanced similarity search for this article.