Soil Physicochemical, Biochemical and Microbial Properties at Varying Proximities to Ten-Year-Old Palm Oil-Mill Effluent Dumpsite in Derived Savannah

Open Access
Download PDF
AgroEnvironmental Sustainability
Daniel Onyedikachi Ugwu , Prisca Oluchi Ogumba , Ndeari King Dedan , Parker Elijah Joshua , Sunday Ewele Obalum , Obioma Uzoma Njoku

Abstract

This study assessed the physico-chemical properties, enzyme activities, and basal respiration of a sandy-loam soil around a ten-year-old palm oil mill effluent (POME) dumpsite at Inyi, a representative palm oil-processing community, in southeastern Nigeria. Sampling was from the POME dumpsite and at 20, 60, 100 and 260 m away. Soil pH ranged from alkaline (7.47) at the dumpsite to moderately acidic (5.83) 260 m away. Organic carbon, total nitrogen, and available phosphorus were highest (3.18\%, 0.406\%, and 76.79 mg/kg, respectively) in POME-dumpsite soil and decreased with distance away from it. The POME-dumpsite soil showed higher contents of the exchangeable bases (K+, Ca2+, Mg2+ and Na+; 0.19, 9.33, 9.00 and 0.16 cmol/kg, respectively), cation exchange capacity (22.13 cmol/kg), base saturation (84.40\%) and, hence, higher structure stability than the adjacent soils. Enzyme assays showed decreases in soil dehydrogenase activity with distance away from the dumpsite. Catalase activity was inhibited at the farthest point (260 m) away from the dumpsite, whereas lipase activity was nominally higher in the dumpsite (81.95 µgPNP/gmin) than in the adjacent soils. Basal respiration decreased only at 20 m away from the dumpsite. These results indicate improved soil fertility/health around POME dumpsites relative to directly unaffected surroundings. By positively influencing soil physico-chemical properties and enzyme/microbial activities, long-term controlled dumping of POME could enhance environmental quality. Understanding the interplay between these ecological benefits of controlled POME dumping and the widely acknowledged eco-toxic effects of POME is essential for developing its sustainable management strategies in palm oil-processing regions.

Keywords

organic effluents environmental degradation enzyme activities soil basal respiration wastewater management ecosystem quality

References

  1. Adegbite, A. O., & Olatunji, O. S. (2022). Assessment of soil physical degradation in tropical agroecosystems: A case study from southwestern Nigeria. Catena, 213, 106168. https://doi.org/10.1016/j.catena.2022.106168 [Google Scholar]
  2. Adhikari, D., Kobashi, Y., Kai, T., Kawagoe, T., Kubota, K., Araki, K., & Kubo, M. (2018). Suitable soil conditions for tomato cultivation under an organic farming system. Journal of Agricultural Chemistry and Chemistry, 7(3), 117–132. https://doi.org/10.4236/jacen.2018.73011 [Google Scholar]
  3. Ahmad, A. L., Ismail, S., & Bhatia, S. (2003). Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination, 157, 87–95. https://doi.org/10.1016/S0011-9164(03)00387-4 [Google Scholar]
  4. Anele, B. C., Okorite, G. W., Chikwem, F., Anioke, F. C., & Ede, P. C. (2025a). Assessment of palm oil mill effluent-induced alterations on soil physicochemical dynamics in Umuapu, Imo State. SSR Journal of Multidisciplinary, 2(5), 14–20. [Google Scholar]
  5. Anele, B. C., Okorite, G.-W., & Chikwem, F. (2025b). Microbial dynamics of soil impacted by palm oil mill effluent in Umuapu, Imo State, Nigeria. SSR Journal of Multidisciplinary, 2(4), 1–7. https://doi.org/10.5281/zenodo.15814869 [Google Scholar]
  6. Anwar, M. M., & Arshad, M. (2015). Leaching losses of nutrient cations (K⁺, Ca²⁺, and Mg²⁺) from Oxisol and Ultisol under different rates of acidic deposition in Thailand. Journal of Soil Science and Environmental Management, 6(5), 125–132. https://doi.org/10.14233/ajchem.2015.18072 [Google Scholar]
  7. Baiyeri, P. K., Ugese, F. D., Obalum, S. E., & Nwobodo, C. E. (2020). Agricultural waste management for horticulture revolution in sub-Saharan Africa. CAB Reviews, 15(017). https://doi.org/10.1079/PAVSNNR202015017 [Google Scholar]
  8. Bassey, O. I. (2016). Overview of oil palm production in Nigeria, comparative social and environmental impacts: The case of Ekong Anaku community in Cross River State, Nigeria. Institute of Social Science, Erasmus University of Rotterdam, The Hague, Netherlands, 3(15), 1–10. [Google Scholar]
  9. Boateng, L., Ansong, R., Owusu, W. B., & Steiner-Asiedu, M. (2016). Coconut oil and palm oil's role in nutrition, health and national development: A review. Ghana Medical Journal, 50(3), 189–196. https://doi.org/10.4314/gmj.v50i3.11 [Google Scholar]
  10. Bremner, D. C., & Mulvaney, J. M. (1982). Total nitrogen. In A. L. Page, R. H. Miller, & D. R. Keaney (Eds.), Methods of soil analysis (Vol. 9, Part 2). American Society of Agronomy. [Google Scholar]
  11. Cohen, G. J., Dembiec, D., & Marcus, J. (1970). Measurement of catalase activity in tissue extracts. Analytical Biochemistry, 34(1), 30–38. https://doi.org/10.1016/0003-2697(70)90083-7 [Google Scholar]
  12. Dushoff, I. M., Payne, J., Hershey, F. B., & Donaldson, R. C. (1965). Oxygen uptake and tetrazolium reduction during skin cycle of the mouse. American Journal of Physiology–Legacy Content, 209(1), 231–235. https://doi.org/10.1152/ajplegacy.1965.209.1.231 [Google Scholar]
  13. Dvořáčková, H., Dvořáček, J., Hueso González, P., & Vlček, V. (2022). Effect of different soil amendments on soil buffering capacity. PloS ONE, 17(2), e0263456. https://doi.org/10.1371/journal.pone.0263456 [Google Scholar]
  14. Enemo, D. C., Onah, M. C., Obalum, S. E., Njoku, O. M., & Igwe, C. A. (2025). Organic matter influence on particle density of low-activity-clay tropical soils and the implications for their porosity assessment. International Journal of Environmental Science & Technology, 22, 12507–12516. https://doi.org/10.1007/s13762-025-06383-8 [Google Scholar]
  15. Eno, E. O., Antai, S. P., & Tiku, D. R. (2017). Microbiological and physicochemical impact of palm oil mill effluent on the surrounding soil at selected factory location within Calabar and Uyo. Imperial Journal of Interdisciplinary Research, 3(10), 760–773. [Google Scholar]
  16. Evanylo, G. (2024). Basic soil fertility and nutrient mobility. In Urban Nutrient Management Handbook (Chapter 4). Virginia Department of Conservation and Recreation. URL: www.dcr.virginia.gov/soil-and-water/document/nmtmscbsf.pdf [Google Scholar]
  17. Eze, C. N., Odoh, C. K., Eze, E. A., Orjiakor, P. I., Enemuor, S. C., & Okobo, U. J. (2018). Chromium (III) and its effects on soil microbial activities and phytoremediation potentials of Arachis hypogea and Vigna unguiculata. African Journal of Biotechnology, 17(38), 1207–1214. https://doi.org/10.5897/AJB2018.16566 [Google Scholar]
  18. Farahani, E. (2025). Potassium may have remarkable dispersive effect on soil structure. Open Access Journal of Agricultural Research, 10(1), Article 000383. https://doi.org/10.23880/oajar-16000383 [Google Scholar]
  19. Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In A. Klute (Ed.), Methods of soil analysis (Part A, 2nd ed., Vol. 9, pp. 383–411). American Society of Agronomy, Madison, WI. [Google Scholar]
  20. Gunn, P. (2014). Problem and prospect of small-scale palm oil processing in Delta State, Nigeria. Biological Agriculture and Healthcare, 4(20), 170–174. [Google Scholar]
  21. Hashiguchi, Y., Zakaria, M. R., Toshinari, M., Yusoff, M. Z. M., Shirai, Y., & Hassan, M. A. (2021). Ecotoxicological assessment of palm oil mill effluent final discharge by zebrafish (Danio rerio) embryonic assay. Environmental Pollution, 277, 116780. https://doi.org/10.1016/j.envpol.2021.116780 [Google Scholar]
  22. Heinen, M. (2017). Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Communications in Soil Science and Plant Analysis, 48(1), 1–27. https://doi.org/10.1080/00103624.2017.1407429 [Google Scholar]
  23. Hosseini, S. E., & Abdul Wahid, M. (2015). Pollutants in palm oil production process. Journal of the Air and Waste Management Association, 65(7), 773–781. https://doi.org/10.1080/10962247.2013.873092 [Google Scholar]
  24. Iqbal, S., Begum, F., Nguchu, B. A., Claver, U. P., & Shaw, P. (2025). The invisible architects: Microbial communities and their transformative role in soil health and global climate changes. Environmental Microbiome, 20, Article 36. https://doi.org/10.1186/s40793-025-00694-6 [Google Scholar]
  25. Isermeyer, H. (1952). Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 56(1–3), 26–38. https://doi.org/10.1002/jpln.19520560107 [Google Scholar]
  26. Izah, S. C., & Ohimain, E. I. (2016). Assessment of the effect of palm oil mill effluent on soil properties. Biotechnology Research, 2(2), 132–141. https://doi.org/10.1007/s40868-016-0012-3 [Google Scholar]
  27. Jidere, C. M., Ezeokoye, C. S., Ayah, F. T., Obalum, S. E., & Ukaegbu, E. P. (2025). Soil structure stability and organic carbon distribution along the toposequence of Orumba North in derived savannah of the South-East, Nigeria. Nigerian Journal of Soil Science, 34(2), 34–42. https://doi.org/10.59327/njss.2025.34.2.419 [Google Scholar]
  28. Joseph, P. O., Abraham, L. E., Jidere, C. M., Ugwuoju, C. L., & Obalum, S. E. (2025). Long-term influence of coal mining activities on physico-chemical and hydraulic properties of sandy tropical soils. AgroEnvironmental Sustainability, 3(2), 119–129. https://doi.org/10.59983/s2025030204 [Google Scholar]
  29. Komilis, P. D., Karatzas, E., & Halvada, C. P. (2005). The effect of olive mill wastewater on seed germination after various pretreatment techniques. Journal of Environmental Management, 74, 339–348. https://doi.org/10.1016/j.jenvman.2004.09.009 [Google Scholar]
  30. Kumar, S. I., Chaudhuri, S., & Maiti, I. S. K. (2013). Soil dehydrogenase enzyme activity in natural and mine soil—A review. Middle East Journal of Scientific Research, 13(7), 898–906. https://doi.org/10.5829/idosi.mejsr.2013.13.7.2801 [Google Scholar]
  31. Landon, J. R. (1991). Booker tropical soil manual: A handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Longman Scientific and Technical, Essex, New York, p. 474. [Google Scholar]
  32. Liu, J., Xie, J., Chu, Y., Sun, C., Chen, C., & Wang, Q. (2008). Combined effect of cypermethrin and copper on catalase activity in soil. Journal of Soils and Sediments, 8, 327–332. https://doi.org/10.1007/s11368-008-0029-x [Google Scholar]
  33. Maduwuba, M. C. (2024). Microbiological and physicochemical evaluation of palm oil mill effluent (POME) contaminated soil. World Scientific News, 189, 200–211. [Google Scholar]
  34. Margesin, R., Feller, G., Hämmerle, M., Stegner, U., & Schinner, F. (2002). A colorimetric method for the determination of lipase activity in soil. Biotechnology Letters, 24, 27–33. https://doi.org/10.1023/A:1013801131553 [Google Scholar]
  35. Martínez-Alvarez, V., González-Ortega, M. J., Martin-Gorriz, B., Soto-García, M., & Maestre-Valero, J. F. (2018). Seawater desalination for crop irrigation—Current status and perspectives. In Emerging technologies for sustainable desalination handbook (pp. 461–492). https://doi.org/10.1016/B978-0-12-815818-0.00014-X [Google Scholar]
  36. McCauley, A., Jones, C., & Olson-Rutz, K. (2017). Soil pH and organic matter. Nutrient management module No. 8. U.S. Department of Agriculture (USDA), Montana State University, and Montana State University Extension. [Google Scholar]
  37. McLean, E. O. (1982). Soil pH and lime requirement. In A. L. Page (Ed.), Methods of soil analysis. Part 2 (2nd ed., pp. 199–224). Agronomy Monograph No. 9, ASA, Madison, WI. [Google Scholar]
  38. Mohammad, S., Baidurah, S., Kobayashi, T., Ismail, N., & Leh, C. P. (2021). Palm oil mill effluent treatment processes—A review. Processes, 9(5), 739. https://doi.org/10.3390/pr9050739 [Google Scholar]
  39. Mukherjee, A., & Lal, R. (2014). Comparison of soil quality index using three methods. PLOS ONE, 9(8), e105981. https://doi.org/10.1371/journal.pone.0105981 [Google Scholar]
  40. Nasrin, A. B., & Hassan, M. A. (2020). Effects of palm oil mill effluent on soil chemical properties and microbial biomass. Environmental Monitoring and Assessment, 192, Article 456. https://doi.org/10.1007/s10661-020-08434-2 [Google Scholar]
  41. Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2: Chemical and microbiological properties (pp. 539–579). ASA, Madison, WI. [Google Scholar]
  42. Nta, S. A., Udom, I. J., & Udo, S. O. (2020). Investigation of palm oil mill effluent pollution impact on groundwater quality and agricultural soils. Asian Journal of Environment and Ecology, 12(1), 28–36. https://doi.org/10.9734/ajee/2020/v12i130151 [Google Scholar]
  43. Nwachukwu, J. N., Njoku, U. O., Agu, C. V., Okonkwo, C. C., & Obidiegwu, C. J. (2018). Impact of palm oil mill effluent (POME) contamination on soil enzyme activities and physicochemical properties. Research Journal of Environmental Toxicology, 12(1), 34–41. https://doi.org/10.3923/rjet.2018.34.41 [Google Scholar]
  44. Nwaogu, L. A., Agha, N. C., & Ihejirika, C. E. (2012). Investigation on the long-term effects of palm oil mill effluent pollution on soil catalase activity and dehydrogenase activity of soil microorganisms. Journal of Biodiversity and Environmental Sciences, 2(4), 10–14. [Google Scholar]
  45. Nwoko, C. O., Ogunremi, S., Nkwocha, E. E., & Nnorom, I. C. (2010). Evaluation of phytotoxicity effect of palm oil mill effluent and cassava mill effluent on tomato (Lycopersicum esculentum) after pretreatment option. International Journal of Environmental Science and Development, 1, 67–72. https://doi.org/10.7763/IJESD.2010.V1.14 [Google Scholar]
  46. Nwoko, O. C., Onoh, P. C., & Ogunyemi, S. (2012). Plant nutrient recovery following palm oil mill effluent soil amendment in maize (Zea mays) grown screen house experiment. International Journal of Agriculture and Rural Development, 15(2), 1109–1118. [Google Scholar]
  47. Nwuche, C. O., Aoyagi, H., & Ogbonna, J. C. (2013). Lipase production from palm oil mill effluent by Aspergillus terreus immobilized on Luffa sponge. Journal of Applied Sciences, 13(24), 5661–5671. https://doi.org/10.3923/jas.2013.5661.5671 [Google Scholar]
  48. Nzeka, U. M. (2014). Nigeria provides export market for oilseeds and products. In GAIN Report, USDA Foreign Agricultural Service. [Google Scholar]
  49. Obalum, S. E., & Obi, M. E. (2013). Moisture characteristics and their point pedotransfer functions for coarse-textured tropical soils differing in structural degradation status. Hydrological Processes, 27(19), 2731–2735. https://doi.org/10.1002/hyp.9398 [Google Scholar]
  50. Obalum, S. E., Chibuike, G. U., Peth, S., & Ouyang, Y. (2017). Soil organic matter as sole indicator of soil degradation. Environmental Monitoring and Assessment, 189, 1–19. https://doi.org/10.1007/s10661-017-5881-y [Google Scholar]
  51. Obalum, S. E., Nwite, J. C., Watanabe, Y., Igwe, C. A., & Wakatsuki, T. (2012a). Comparative topsoil characterization of sawah rice fields in selected inland valleys around Bida, north-central Nigeria: Physicochemical properties and fertility status. Tropical Agriculture and Development, 56(2), 39–48. https://doi.org/10.11248/jsta.56.39 [Google Scholar]
  52. Obalum, S. E., Oppong, J., Igwe, C. A., Watanabe, Y., & Obi, M. E. (2013a). Spatial variability of uncultivated soils in derived savanna. International Agrophysics, 27(1), 57–67. https://doi.org/10.2478/v10247-012-0068-9 [Google Scholar]
  53. Obalum, S. E., Watanabe, Y., Igwe, C. A., Obi, M. E., & Wakatsuki, T. (2013b). Improving on the prediction of cation exchange capacity for highly weathered and structurally contrasting tropical soils from their fine-earth fractions. Communications in Soil Science and Plant Analysis, 44(12), 1831–1848. https://doi.org/10.1080/00103624.2013.790401 [Google Scholar]
  54. Obalum, S. E., Watanabe, Y., Igwe, C. A., Obi, M. E., & Wakatsuki, T. (2012b). Carbon stock in the solum of some coarse-textured soils under secondary forest, grassland fallow and bare footpath in the derived savanna of southeastern Nigeria. Soil Research, 50(2), 157–166. https://doi.org/10.1071/SR11096 [Google Scholar]
  55. Oguike, P. C., Onwuka, B. M., & Obalum, S. E. (2023). Soil organic matter control of water transmission properties of coarse-textured soils under contrasting land-use types in tropical rainforest. International Journal of Hydrology Science and Technology, 16(1), 93–106. https://doi.org/10.1504/IJHST.2022.10046853 [Google Scholar]
  56. Ogumba, P. O., Obalum, S. E., & Uzoh, I. M. (2020). Soil biochemical and microbial properties of sandy loam Ultisols as affected by some tillage and nutrient management practices. International Journal of Agriculture and Rural Development, 23(2), 5184–5195. [Google Scholar]
  57. Ogunbode, T. O., Aliku, O., Ogungbile, P. O., Olatubi, I. V., Adeniyi, V. A., & Akintunde, E. A. (2022). Environmental impact of oil palm processing on some properties of the on-site soil in a growing city in Nigeria. Frontiers in Environmental Science, 10, Article 918478. https://doi.org/10.3389/fenvs.2022.918478 [Google Scholar]
  58. Ohimain, E. I., Emeti, C. I., & Izah, S. C. (2014). Employment and socioeconomic effects of semi-mechanized palm oil mill in Bayelsa State, Nigeria. Asian Journal of Agricultural Extension, Economics and Sociology, 3(3), 206–216. https://doi.org/10.9734/AJAEES/2014/9197 [Google Scholar]
  59. Okolo, C. C., Okolo, E. C., Nnadi, A. L., Obikwelu, F. E., Obalum, S. E., & Igwe, C. A. (2019). The oil palm (Elaeis guineensis Jacq): Nature’s ecological endowment to Eastern Nigeria. Agro-Science, 18(3), 48–57. https://doi.org/10.4314/as.v18i3.9 [Google Scholar]
  60. Okorie, E. E., Obalum, S. E., & Singh, L. (2017). The potential of fermented cottonseed oil-mill effluent as inexpensive biofertilizers and its agronomic evaluation on medium-textured tropical soil. International Journal of Recycling of Organic Waste in Agriculture, 6(2), 117–124. https://doi.org/10.1007/s40093-017-0158-6 [Google Scholar]
  61. Olsen, S. R., & Sommers, L. E. (1982). Determination of available phosphorus. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis (Vol. 2, p. 403). American Society of Agronomy, Madison, WI. [Google Scholar]
  62. Omoregie, A. I., Muda, K., Rahman, M. R., Bakri, M. K. B., Ngu, L. H., Ong, D. E. L., Basri, H. F. B., Hong, C. Y., & Mokhter, M. A. (2024). Impact of palm oil mill effluent as an economic medium for soil fixation via microbially induced carbonate precipitation. Biomass Conversion and Biorefinery, 14, 16369–16401. https://doi.org/10.1007/s13399-023-03889-4 [Google Scholar]
  63. Onyia, C. O., Uyub, A. M., Akuma, J. C. L., Norulaimi, N. A., & Omat, A. K. M. (2001). Increasing the fertilizer value of palm oil mill sludge: Bioaugmentation in nitrification. Water Science and Technology, 44(10), 157–162. https://doi.org/10.2166/wst.2001.0608 [Google Scholar]
  64. Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. In G. H. Dar, R. A. Bhat, M. A. Mehmood, & K. R. Hakeem (Eds.), Microbiota and biofertilizers (Vol. 2). Springer, Cham. https://doi.org/10.1007/978-3-030-61010-4_1 [Google Scholar]
  65. Pulido-Moncada, M., Ball, B. C., Gabriels, D., Labo, D., & Cornelius, W. M. (2015). Evaluation of soil physical quality index, S, for some tropical and temperate medium-textured soils. Soil Science Society of America Journal, 79(1), 9–20. https://doi.org/10.2136/sssaj2014.06.0259 [Google Scholar]
  66. Rhoades, J. D. (1982). Cation exchange capacity. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis: Part 2, Chemical and microbiological properties (pp. 149–157). American Society of Agronomy, Madison, WI. [Google Scholar]
  67. Sharifah, M., Baidurah, S., Kobayashi, T., Ismail, N., & Leh, C. P. (2021). Palm oil mill effluent treatment processes—A review. Processes, 9(5), 739. https://doi.org/10.3390/pr9050739 [Google Scholar]
  68. Tabatabai, M. A. (1982). Soil enzymes: Dehydrogenases. In Methods of soil analysis (Part 2, pp. 903–948). American Society of Agronomy, Madison, WI. [Google Scholar]
  69. Taye, B., & Yifru, A. (2010). Assessment of soil fertility status with depth in wheat growing highlands of Southeast Ethiopia. World Journal of Agricultural Science, 6, 525–531. [Google Scholar]
  70. Thomas, G. W. (1982). Exchangeable cations. In A. L. Page (Ed.), Methods of soil analysis. Part 2: Chemical and microbiological properties (2nd ed., Agronomy Monograph No. 9, pp. 159–165). American Society of Agronomy. [Google Scholar]
  71. Ugwu, D. O., Joshua, P. E., Obalum, S. E., Dedan, N. K., & Njoku, O. U. (2024). Aging-associated fermentation of palm oil-mill effluent enhances its organo-fertilizer value and the desired agronomic effects in low-fertility soils. International Journal of Recycling of Organic Waste in Agriculture, 13(4), 132439. https://doi.org/10.57647/ijrowa-xqpd-6789 [Google Scholar]
  72. Ugwu, D. O., Ogumba, P. O., Joshua, E. P., Obalum, S. E., & Njoku, O. U. (2025). Influence of fresh and aged palm oil-mill effluents on soil biochemical and microbial properties in humid tropical environments. International Journal of Environment and Waste Management. (In press). [Google Scholar]
  73. Umoren, A. S., Igwenagu, C. M., Ezeaku, P. I., Ezenne, G. I., Obalum, S. E., Gyang, B. D., & Igwe, C. A. (2019). Long-term effects of crude oil spillage on selected physicochemical properties including heavy metal contents of sandy tropical soil. Bulletin of Environmental Contamination and Toxicology, 102, 468–476. https://doi.org/10.1007/s00128-019-02579-0 [Google Scholar]
  74. Wang, L., Hamel, C., Lu, P., Wang, J., Sun, D., Lee, S. J., & Gan, G. Y. (2023). Using enzyme activities as an indicator of soil fertility in grassland—An academic dilemma. Frontiers in Plant Science, 14, 1175946. https://doi.org/10.3389/fpls.2023.1175946 [Google Scholar]
  75. Xie, K., Cakmak, I., Wang, S., Zhang, F., & Guo, S. (2021). Synergistic and antagonistic interactions between potassium and magnesium in higher plants. The Crop Journal, 9(2), 249–256. https://doi.org/10.1016/j.cj.2020.10.005 [Google Scholar]
  76. Zalewska, M., Wierzbowska, J., & Nogalska, A. (2023). Effect of basic cation saturation ratios on the Mg, K, and Ca content of annual ryegrass (Lolium multiflorum L.). Journal of Elementology, 28(2), 345–360. [Google Scholar]
  77. Zhao, C., Miao, Y., Yu, C., Zhu, L., Wang, F., Jiang, L., Hui, D., & Wan, S. (2016). Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe. Scientific Reports, 6(1), 24317. https://doi.org/10.1038/srep24317 [Google Scholar]
  78. Zhong, S., Zeng, H., & Jin, Z. (2015). Soil microbiological and biochemical properties as affected by different long-term banana-based rotations in the tropics. Pedosphere, 25(6), 868–877. https://doi.org/10.1016/S1002-0160(15)30067-9 [Google Scholar]
  79. Zulfahmi, I., Batubara, A. S., Perdana, A. W., Roza, Z. H., Nafis, B., & Maghfiriadi, F. (2023). Turbidity effect derived from palm oil mill effluent altered predation period of Siamese fighting fish (Betta splendens, Regan 1910). Depik, 12(3), 398–402. https://doi.org/10.13170/depik.12.3.34628 [Google Scholar]
  80. Zulfahmi, I., Kandi, R. N., Huslina, F., Rahmawati, L., Muliari, M., Sumon, K. A., & Rahman, M. M. (2021). Phytoremediation of palm oil mill effluent (POME) using water spinach (Ipomoea aquatica Forsk). Environmental Technology and Innovation, 21, 101260. https://doi.org/10.1016/j.eti.2020.101260 [Google Scholar]

Similar Articles

1-10 of 70

You may also start an advanced similarity search for this article.