Abstract
Phytoremediation techniques have emerged as a promising approach for soil reclamation and remediation of contaminated sites. This review article provides a comprehensive analysis of the different phytoremediation techniques used for soil reclamation and their effectiveness in removing contaminants from soil. The aim is to evaluate the current state of knowledge and to highlight potential avenues for future research in this field. The review begins with a discussion of the principles underlying phytoremediation, emphasizing the ability of plants to accumulate, tolerate, and detoxify contaminants through various mechanisms such as phytoaccumulation, rhizo-degradation, and rhizo-filtration. Different plant species and their suitability for phytoremediation are reviewed, considering factors such as metal tolerance, biomass production, and pollutant uptake efficiency. In addition, the role of soil amendments and their impact on improving phytoremediation efficiency is critically evaluated. Commonly used amendments, including chelating agents, organic matter, and pH adjusters, are reviewed with emphasis on their ability to increase metal bioavailability and plant uptake. The review also addresses challenges associated with phytoremediation, such as plant growth limitations, long-term sustainability, and potential risks associated with the release of pollutants into the atmosphere during biomass disposal. Strategies to mitigate these challenges, including plant breeding and genetic engineering, are discussed.
Keywords
References
- Abhilash, P. C., Jamil, S., & Singh, N. (2009). Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnology Advances, 27(4), 474-488. [Google Scholar]
- Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. A. (2017). Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environmental Management, 60, 758-783. https://doi.org/10.1007/s00267-017-0896-2 [Google Scholar]
- Allouzi, M. M. A., Tang, D. Y. Y., Chew, K. W., Rinklebe, J., Bolan, N., Allouzi, S. M. A., & Show, P. L. (2021). Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health. Science of the Total Environment, 788, 147815. https://doi.org/10.1016/j.scitotenv.2021.147815 [Google Scholar]
- Baker, A. J., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2020). Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In Phytoremediation of Contaminated Soil and Water, CRC Press, London, UK, pp. 85-107. [Google Scholar]
- Bernard S, Enayati A, Redwood L., (2001). Autism: a novel form of mercury poisoning. Review. Medical Hypotheses, 56, 462–471 https://doi.org/10.1054/mehy.2000.1281 [Google Scholar]
- Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management, 105, 103-120. https://doi.org/10.1016/j.jenvman.2012.04.002 [Google Scholar]
- Borgå, K., McKinney, M. A., Routti, H., Fernie, K. J., Giebichenstein, J., Hallanger, I., & Muir, D. C. (2022). The influence of global climate change on accumulation and toxicity of persistent organic pollutants and chemicals of emerging concern in Arctic food webs. Environmental Science: Processes & Impacts, 24(10), 1544-1576. 10.1039/d1em00469g 10.1039/D1EM00469G [Google Scholar]
- Brevik, K., Lindström, L., McKay, S. D., & Chen, Y. H. (2018). Transgenerational effects of insecticides—implications for rapid pest evolution in agroecosystems. Current Opinion in Insect Science, 26, 34-40. https://doi.org/10.1016/j.cois.2017.12.007 [Google Scholar]
- Brunner, P. H., & Rechberger, H. (2015). Waste to energy–key element for sustainable waste management. Waste Management, 37, 3-12. https://doi.org/10.1016/j.wasman.2014.02.003 [Google Scholar]
- Budnik, L. T., & Casteleyn, L. (2019). Mercury pollution in modern times and its socio-medical consequences. Science of the Total Environment, 654, 720-734. https://doi.org/10.1016/j.scitotenv.2018.10.408 [Google Scholar]
- Burges, A., Alkorta, I., Epelde, L., & Garbisu, C. (2018). From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. International Journal of Phytoremediation, 20(4), 384-397. https://doi.org/10.1080/15226514.2017.1365340 [Google Scholar]
- Chagnon, M., Kreutzweiser, D., Mitchell, E. A., Morrissey, C. A., Noome, D. A., & Van der Sluijs, J. P. (2015). Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environmental Science and Pollution Research, 22, 119-134. https://doi.org/10.1007/s11356-014-3277-x [Google Scholar]
- Chang, J., Fang, W., Liang, J., Zhang, P., Zhang, G., Zhang, H., & Wang, Q. (2022). A critical review on interaction of microplastics with organic contaminants in soil and their ecological risks on soil organisms. Chemosphere, 306, 135573. https://doi.org/10.1016/j.chemosphere.2022.135573 [Google Scholar]
- Cieślik, B. M., Namieśnik, J., & Konieczka, P. (2015). Review of sewage sludge management: standards, regulations and analytical methods. Journal of Cleaner Production, 90, 1-15. https://doi.org/10.1016/j.jclepro.2014.11.031 [Google Scholar]
- Dastyar, W., Raheem, A., He, J., & Zhao, M. (2019). Biofuel production using thermochemical conversion of heavy metal-contaminated biomass (HMCB) harvested from phytoextraction process. Chemical Engineering Journal, 358, 759-785. https://doi.org/10.1016/j.cej.2018.08.111 [Google Scholar]
- Datta, R., Das, P., Tappero, R., Punamiya, P., Elzinga, E., Sahi, S., & Sarkar, D. (2017). Evidence for exocellular arsenic in fronds of Pteris vittata. Scientific Reports, 7(1), 2839. [Google Scholar]
- Davidsen, N., Lauvås, A. J., Myhre, O., Ropstad, E., Carpi, D., Mendoza-de Gyves, E., & Pistollato, F. (2021). Exposure to human relevant mixtures of halogenated persistent organic pollutants (POPs) alters neurodevelopmental processes in human neural stem cells undergoing differentiation. Reproductive Toxicology, 100, 17-34. https://doi.org/10.1016/j.reprotox.2020.12.013 [Google Scholar]
- Dixit, R., Malaviya, D., Pandiyan, K., Singh, U., Sahu, A., Shukla, R., Singh, B., Rai, J., Sharma, P., Lade, H. (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2), 2189–2212. [Google Scholar]
- Domenech, J., & Marcos, R. (2021). Pathways of human exposure to microplastics, and estimation of the total burden. Current Opinion in Food Science, 39, 144-151. https://doi.org/10.1016/j.cofs.2021.01.004 [Google Scholar]
- Domingo, J. L., & Nadal, M. (2017). Carcinogenicity of consumption of red meat and processed meat: A review of scientific news since the IARC decision. Food and Chemical Toxicology, 105, 256-261. https://doi.org/10.1016/j.fct.2017.04.028 [Google Scholar]
- Drwal, E., Rak, A., & Gregoraszczuk, E. L. (2019). Polycyclic aromatic hydrocarbons (PAHs)—Action on placental function and health risks in future life of newborns. Toxicology, 411, 133-142. https://doi.org/10.1016/j.tox.2018.10.003 [Google Scholar]
- Eid, E. M., & Shaltout, K. H. (2016). Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site. International Journal of Phytoremediation, 18(11), 1075-1085. https://doi.org/10.1080/15226514.2016.1183578 [Google Scholar]
- Enders, L., & Begcy, K. (2021). Unconventional routes to developing insect-resistant crops. Molecular Plant, 14(9), 1439-1453. https://doi.org/10.1016/j.molp.2021.06.029 [Google Scholar]
- Evangelou, M. W., Papazoglou, E. G., Robinson, B. H., & Schulin, R. (2015). Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land. In Phytoremediation: Management of Environmental Contaminants, Volume 1, Springer, pp. 115-132. https://doi.org/10.1007/978-3-319-10395-2_9 [Google Scholar]
- Fatima, G., Raza, A. M., Hadi, N., Nigam, N., & Mahdi, A. A. (2019). Cadmium in human diseases: It’s more than just a mere metal. Indian Journal of Clinical Biochemistry, 34, 371-378. https://doi.org/10.1007/s12291-019-00839-8 [Google Scholar]
- Flora G, Gupta D, and Tiwari A. (2012) Toxicity of lead: a review with recent updates. Interdisciplinary Toxicology. 5(2), 47–58. https://doi.org/10.2478/v10102-012-0009-2 [Google Scholar]
- Gall, J. E., Boyd, R. S., & Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: a review. Environmental Monitoring and Assessment, 187, 1-21. https://doi.org/10.1007/s10661-015-4436-3 [Google Scholar]
- Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782 [Google Scholar]
- Gong, Y., Zhao, D., & Wang, Q. (2018). An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Research, 147, 440-460. https://doi.org/10.1016/j.watres.2018.10.024 [Google Scholar]
- Halim, M. A., Majumder, R. K., & Zaman, M. N. (2015). Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh. Arabian Journal of Geosciences, 8, 3391-3401. https://doi.org/10.1007/s12517-014-1480-1 [Google Scholar]
- Huang, H., Yu, N., Wang, L., Gupta, D., He, Z., Wang, K., Zhu, Z., Yan, X., Li, T., & Yang, X. (2011) The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium cocontaminated soil. Bioresoure Technology 102(23), 11034–11038. [Google Scholar]
- Ibañez, S., Talano, M., Ontañon, O., Suman, J., Medina, M. I., Macek, T., & Agostini, E. (2016). Transgenic plants and hairy roots: exploiting the potential of plant species to remediate contaminants. New biotechnology, 33(5), 625-635. https://doi.org/10.1016/j.nbt.2015.11.008 [Google Scholar]
- Jang, Y. C., Somanna, Y., & Kim, H. J. I. J. (2016). Source, distribution, toxicity and remediation of arsenic in the environment–a review. International Journal of Applied Environmental Sciences, 11(2), 559-581. [Google Scholar]
- Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin. 68, 167–182. [Google Scholar]
- Jeevanantham, S., Saravanan, A., Hemavathy, R. V., Kumar, P. S., Yaashikaa, P. R., & Yuvaraj, D. (2019). Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects. Environmental Technology & Innovation, 13, 264-276. https://doi.org/10.1016/j.eti.2018.12.007 [Google Scholar]
- Jiang, X. Q., Mei, X. D., & Feng, D. (2016). Air pollution and chronic airway diseases: what should people know and do?. Journal of Thoracic Disease, 8(1), E31. https://doi.org/10.3978/j.issn.2072-1439.2015.11.50 [Google Scholar]
- Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodes, C.J., & Valkoc, M. (2011). Arsenic: toxicity, oxidative stress and human disease. Journal of Applied Toxicology. 31:95–107 https://doi.org/10.1002/jat.1649 [Google Scholar]
- Kennen, K., & Kirkwood, N. (2015). Phyto: principles and resources for site remediation and landscape design. Routledge, England, UK, pp. 378. [Google Scholar]
- Kidd, P., Mench, M., Álvarez-López, V., Bert, V., Dimitriou, I., Friesl-Hanl, W., & Puschenreiter, M. (2015). Agronomic practices for improving gentle remediation of trace element-contaminated soils. International Journal of Phytoremediation, 17(11), 1005-1037. https://doi.org/10.1080/15226514.2014.1003788 [Google Scholar]
- Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71-80. https://doi.org/10.1016/j.envint.2013.07.019 [Google Scholar]
- Kumar, A., Kumar, A., MMS, C. P., Chaturvedi, A. K., Shabnam, A. A., Subrahmanyam, G., & Yadav, K. K. (2020a). Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. International Journal of Environmental Research and Public Health, 17(7), 2179. https://doi.org/10.3390/ijerph17072179 [Google Scholar]
- Kumar, S., & Sharma, A. (2019). Cadmium toxicity: effects on human reproduction and fertility. Reviews on Environmental Health, 34(4), 327-338. https://doi.org/10.1515/reveh-2019-0016 [Google Scholar]
- Kumar, V., & Kumar, P. (2019b). A review on feasibility of phytoremediation technology for heavy metals removal. Archives of Agriculture and Environmental Science, 4(3), 326-341. https://doi.org/10.26832/24566632.2019.0403011 [Google Scholar]
- Kumar, V., & Kumar, P. (2019c). Pesticides in agriculture and environment: Impacts on human health. (Kumar, V., Kumar, R., Singh, J. and Kumar, P. (eds) In Contaminants in Agriculture and Environment: Health Risks and Remediation, Volume 1, Agro Environ Media, Haridwar, India, pp. 76-95. https://doi.org/10.26832/AESA-2019-CAE-0160-07 [Google Scholar]
- Kumar, V., Kumar, P., Eid, E. M., Singh, J., Adelodun, B., Kumar, P., & Choi, K. S. (2021). Modeling of water hyacinth growth and its role in heavy metals accumulation from unoperated old Ganga canal at Haridwar, India. Rendiconti Lincei. Scienze Fisiche e Naturali, 32, 805-816. https://doi.org/10.1007/s12210-021-01024-x [Google Scholar]
- Kumar, V., Kumar, P., Singh, J., & Kumar, P. (2020b). Potential of water fern (Azolla pinnata R. Br.) in phytoremediation of integrated industrial effluent of SIIDCUL, Haridwar, India: removal of physicochemical and heavy metal pollutants. International journal of phytoremediation, 22(4), 392-403. https://doi.org/10.1080/15226514.2019.1667950 [Google Scholar]
- Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y. B., Naidu, R., & Megharaj, M. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere, 168, 944-968. https://doi.org/10.1016/j.chemosphere.2016.10.115 [Google Scholar]
- Le Guern, C., Jean‐Soro, L., Béchet, B., Lebeau, T., & Bouquet, D. (2018). Management initiatives in support of the soil quality of urban allotment gardens: E xamples from N antes (F rance). Land Degradation & Development, 29(10), 3681-3692. https://doi.org/10.1002/ldr.3123 [Google Scholar]
- Lebelo, K., Malebo, N., Mochane, M. J., & Masinde, M. (2021). Chemical contamination pathways and the food safety implications along the various stages of food production: a review. International Journal of Environmental Research and Public Health, 18(11), 5795. https://doi.org/10.3390/ijerph18115795POPs [Google Scholar]
- Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206-219. https://doi.org/10.1016/j.scitotenv.2018.03.161 [Google Scholar]
- Mani, D., & Kumar, C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. International Journal of Environmental Science and Technology, 11, 843-872. https://doi.org/10.1007/s13762-013-0299-8 [Google Scholar]
- McIntyre, T. (2003). Phytoremediation of Heavy Metals from Soils. In: Tsao, D.T. (eds) Phytoremediation. Advances in Biochemical Engineering/Biotechnology, Volume 78, pp. 98-119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45991-X_4 [Google Scholar]
- Meena, M., Sonigra, P., & Yadav, G. (2021). Biological-based methods for the removal of volatile organic compounds (VOCs) and heavy metals. Environmental Science and Pollution Research, 28, 2485-2508. https://doi.org/10.1007/s11356-020-11112-4 [Google Scholar]
- Meers, E., Van Slycken, S., Adriaensen, K., Ruttens, A., Vangronsveld, J., Du Laing, G., Witters, N., Thewys, T., Tack, F. (2010) The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78(1), 35–41. [Google Scholar]
- Meharg, A. A. (2003). Variation in arsenic accumulation–hyperaccumulation in ferns and their allies: rapid report. New Phytologist, 157(1), 25-31. https://doi.org/10.1046/j.1469-8137.2003.00541.x [Google Scholar]
- Mengoni, A., Cecchi, L., & Gonnelli, C. (2011). Nickel hyperaccumulating plants and Alyssum bertolonii: model systems for studying biogeochemical interactions in serpentine soils. In Bio-Geo Interactions in Metal-Contaminated Soils, pp. 279-296. Berlin, Heidelberg: Springer Berlin Heidelberg. [Google Scholar]
- Meynet, P., Hale, S. E., Davenport, R. J., Cornelissen, G., Breedveld, G. D., & Werner, D. (2012). Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil. Environmental Science & Technology, 46(9), 5057-5066. https://doi.org/10.1021/es2043905 [Google Scholar]
- Mir, Z. A., Bharose, R., Lone, A. H., & Malik, Z. A. (2017). Review on phytoremediation: An ecofriendly and green technology for removal of heavy metals. Crop Research, 52 (1-3), 74-82. [Google Scholar]
- Miransari, M. (2011). Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances, 29(6), 645-653. https://doi.org/10.1016/j.biotechadv.2011.04.006 [Google Scholar]
- Mishra, J., Singh, R., & Arora, N. K. (2017). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology, 8, 1706. https://doi.org/10.3389/fmicb.2017.01706 [Google Scholar]
- Morkunas, I., Woźniak, A., Mai, V. C., Rucińska-Sobkowiak, R., & Jeandet, P. (2018). The role of heavy metals in plant response to biotic stress. Molecules, 23(9), 2320. https://doi.org/10.3390/molecules23092320 [Google Scholar]
- Muerdter, C. P., Wong, C. K., & LeFevre, G. H. (2018). Emerging investigator series: the role of vegetation in bioretention for stormwater treatment in the built environment: pollutant removal, hydrologic function, and ancillary benefits. Environmental Science: Water Research & Technology, 4(5), 592-612. https://doi.org/10.1039/C7EW00511C [Google Scholar]
- Nalla, S., Hardaway, C. J., & Sneddon, J. (2012) Phytoextraction of selected metals by the first and second growth seasons of Spartina alterniflora. Instrumentation Science & Technology, 40(1), 17–28. [Google Scholar]
- Ndakidemi, B., Mtei, K., & Ndakidemi, P. A. (2016). Impacts of synthetic and botanical pesticides on beneficial insects. Agricultural Sciences, 7(06), 364. https://doi.org/10.4236/as.2016.76038 [Google Scholar]
- Nurchi, V. M., Buha Djordjevic, A., Crisponi, G., Alexander, J., Bjørklund, G., & Aaseth, J. (2020). Arsenic toxicity: molecular targets and therapeutic agents. Biomolecules, 10(2), 235. https://doi.org/10.3390/biom10020235 [Google Scholar]
- Oladoye, P. O., Olowe, O. M., & Asemoloye, M. D. (2022). Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere, 288, 132555. https://doi.org/10.1016/j.chemosphere.2021.132555 [Google Scholar]
- Prashar, P., & Shah, S. (2016). Impact of fertilizers and pesticides on soil microflora in agriculture. In Sustainable Agriculture Reviews: Volume 19, pp. 331-361. Springer, Cham. https://doi.org/10.1007/978-3-319-26777-7_8 [Google Scholar]
- Qu, C., Li, B., Wu, H., Wang, S., & Giesy, J. P. (2015). Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons. Environmental Geochemistry and Health, 37, 587-601. https://doi.org/10.1007/s10653-014-9675-7 [Google Scholar]
- Rajmohan, K. V. S., Ramya, C., Viswanathan, M. R., & Varjani, S. (2019). Plastic pollutants: effective waste management for pollution control and abatement. Current Opinion in Environmental Science & Health, 12, 72-84. https://doi.org/10.1016/j.coesh.2019.08.006 [Google Scholar]
- Ramezani, M., Enayati, M., Ramezani, M., & Ghorbani, A. (2021). A study of different strategical views into heavy metal (oid) removal in the environment. Arabian Journal of Geosciences, 14, 1-16. https://doi.org/10.1007/s12517-021-08572-4 [Google Scholar]
- Raskin, I., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8(2), 221-226. https://doi.org/10.1016/S0958-1669(97)80106-1 [Google Scholar]
- Recio-Vazquez L, Garcia-Guinea J, Carral P., (2011). Arsenic mining waste in the catchment area of the Madrid detrital aquifer (Spain). Water, Air, & Soil Pollution, 214, 307–320. https://doi. org/10.1007/s11270-010-0425-x [Google Scholar]
- Rehman, A. U., Nazir, S., Irshad, R., Tahir, K., ur Rehman, K., Islam, R. U., & Wahab, Z. (2021). Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. Journal of Molecular Liquids, 321, 114455. https://doi.org/10.1016/j.molliq.2020.114455 [Google Scholar]
- Robinson, B., Schulin, R., Nowack, B., Roulier, S., Menon, M., Clothier, B. & Mills, T. (2006). Phytoremediation for the management of metal flux in contaminated sites. Forest Snow and Landscape Research, 80(2), 221-224. [Google Scholar]
- Ross, P. S., & Birnbaum, L. S. (2003). Integrated human and ecological risk assessment: a case study of persistent organic pollutants (POPs) in humans and wildlife. Human and Ecological Risk Assessment, 9(1), 303-324. https://doi.org/10.1080/727073292 [Google Scholar]
- Ruttens, A., Boulet, J., Weyens, N., Smeets, K., Adriaensen, K., Meers, E., & Vangronsveld, J. (2011). Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. International Journal of Phytoremediation, 13(1), 194-207. [Google Scholar]
- Saleem, M. H., Ali, S., Hussain, S., Kamran, M., Chattha, M. S., Ahmad, S., & Abdel-Daim, M. M. (2020). Flax (Linum usitatissimum L.): A potential candidate for phytoremediation? Biological and economical points of view. Plants, 9(4), 496. https://doi.org/10.3390/plants9040496 [Google Scholar]
- Saleh, S., Huang, X. D., Greenberg, B. M., & Glick, B. R. (2004). Phytoremediation of Persistent Organic Contaminants in the Environment. In: Singh, A., Ward, O.P. (eds) Applied Bioremediation and Phytoremediation. Soil Biology, Volume 1, pp. 116-120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05794-0_6 [Google Scholar]
- Schweitzer, L., & Noblet, J. (2018). Water contamination and pollution. In Green Chemistry, pp. 261-290. Elsevier. https://doi.org/10.1016/B978-0-12-809270-5.00011-X [Google Scholar]
- Seth, C. S. (2012). A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. The Botanical Review, 78(1), 32-62. https://doi.org/10.1007/s12229-011-9092-x [Google Scholar]
- Siedt, M., Schäffer, A., Smith, K. E., Nabel, M., Roß-Nickoll, M., & van Dongen, J. T. (2021). Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Science of the Total Environment, 751, 141607. https://doi.org/10.1016/j.scitotenv.2020.141607 [Google Scholar]
- Sodhi, K. K., Kumar, M., Agrawal, P. K., & Singh, D. K. (2019). Perspectives on arsenic toxicity, carcinogenicity and its systemic remediation strategies. Environmental Technology & Innovation, 16, 100462. https://doi.org/10.1016/j.eti.2019.100462 [Google Scholar]
- Tack, F. M., & Meers, E. (2010). Assisted phytoextraction: helping plants to help us. Elements, 6(6), 383-388. https://doi.org/10.2113/gselements.6.6.383 [Google Scholar]
- Undaryati, Y. M., Sudjarwo, S. A., & I’thisom, R. (2020). Literature Review: Effect Of Lead Toxicity On Reproductive System. Journal of Global Research in Public Health, 5(1), 1-8. https://doi.org/10.30994/jgrph.v5i1.202 [Google Scholar]
- Vakili-G, R., Momtazi-B, A. A., Vakili-G, Z., Aiyelabegan, H. T., Jaafari, M. R., Rezayat, S. M., & Arbabi Bidgoli, S. (2020). Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artificial Cells, Nanomedicine, and Biotechnology, 48(1), 443-451. https://doi.org/10.1080/21691401.2019.1709855 [Google Scholar]
- Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174(1-3), 1-8. https://doi.org/10.1016/j.jhazmat.2009.09.113 [Google Scholar]
- Xiang, L., Harindintwali, J. D., Wang, F., Redmile-Gordon, M., Chang, S. X., Fu, Y., & Xing, B. (2022). Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants. Environmental Science & Technology, 56(23), 16546-16566. https://doi.org/10.1021/acs.est.2c02976 [Google Scholar]
- Xu, D. M., Fu, R. B., Liu, H. Q., & Guo, X. P. (2021). Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review. Journal of Cleaner Production, 286, 124989. https://doi.org/10.1016/j.jclepro.2020.124989 [Google Scholar]
- Yadav, B. K., Siebel, M. A., & van Bruggen, J. J. (2011). Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula. Clean–Soil, Air, Water, 39(5), 467-474. https://doi.org/10.1002/clen.201000385 [Google Scholar]
- Yang, L., Yuanyuan, Z., Feifei, W., Zidie, L., Shaojuan, G., and Uwe, S. (2020). "Toxicity of mercury: Molecular evidence." Chemosphere 245: 125586. https://doi.org/10.1016/j.chemosphere.2019.125586 [Google Scholar]
- Zhang, R., Wilson, V. L., Hou, A., & Meng, G. (2015). Source of lead pollution, its influence on public health and the countermeasures. International Journal of Health, Animal Science and Food Safety, 2(1), 18-31. https://doi.org/10.13130/2283-3927/4785 [Google Scholar]

