Effects of Integrated Nutrient Management on Growth, Nodulation, and Yield of Soybean [Glycine max (L.) Merr. var. Puja]

Open Access
Download PDF
AgroEnvironmental Sustainability
Sudarshan Khanal , Madhab Bhattarai , Babin Kharel , Manoj K.C , Dipesh Chand Yadav , Achyut Gaire , Chhaya Khanal , Rajendra Bam

Abstract

Inefficient fertilizer management is a major reason for the low soybean productivity in Nepal. This study conducted at an altitude of 811 meters in Baitadi, Nepal, examined the effects of integrated nutrient management on soybean growth, nodulation, and yield. Employing an RCBD experimental layout with 3 replications, the study evaluated 9 treatments, namely: Control, Rhizobium+100% PK, Rhizobium+50% RDF, Rhizobium+75% RDF, Vermicompost+50% RDF, Vermicompost+75% RDF, FYM+50% RDF, FYM+75% RDF, RDF (NPK @ 10:40:30 kg/ha). The results revealed that ‘Rhizobium+100% PK’ produced maximum plant height (140.8 cm), dry weight growth rate (2.89 gram/plant/day), nodule count (11.33), and nodule mass (0.55 gram). ‘Rhizobium+75% RDF’ produced the highest number of trifoliate leaves (62.78) and leaf area index (15.30). Furthermore, ‘Vermicompost+50% RDF’ resulted in a maximum fresh weight growth rate (7.86 gram/plant/day), ‘RDF’ resulted in the highest root diameter (12.89 mm), and ‘FYM+75% NPK’ produced highest 1000-grain weight (145.9 g). The treatments ‘VC+75 % RDF’ and ‘Rhizobium+50 % RDF’ stood out with a remarkable grain yield of 3.659 tons/ha and 3.642 tons/ha respectively. These two treatments were statistically indistinguishable regarding grain yield. The application of ‘VC+75 % RDF’ or ‘Rhizobium+50 % RDF’ can prove to be an effective way to enhance the productivity of soybean. However, the performance of soybean can vary depending on the variety, intercultural operations, environmental conditions, and residual nutrient status of the soil. Therefore, we recommend further research to solidify these findings.

Keywords

bio-fertilizers Rhizobium soybean sustainable agriculture

References

  1. Abid, M., Batool, T., Siddique, G., Ali, S., Binyamin, R., Shahid, M. J., Rizwan, M., Alsahli, A. A., & Alyemeni, M. N. (2020). Integrated Nutrient Management Enhances Soil Quality and Crop Productivity in Maize-Based Cropping System. Sustainability, 12(23), 10214. https://doi.org/10.3390/su122310214 [Google Scholar]
  2. Agarwal, D. K., Billore, S. D., Sharma, A. N., Dupare, B. U., & Srivastava, S. K. (2013). Soybean: Introduction, Improvement, and Utilization in India—Problems and Prospects. Agricultural Research, 2(4), 293–300. https://doi.org/10.1007/s40003-013-0088-0 [Google Scholar]
  3. Ahmad, J., S. Anwar, A.A. Shad, F.Y.S. Marwat, H. Bibi, F. Ahmad, W. Noor and B. Sadia. (2021). Yield and nutritional status of mungbean as influenced by molybdenum and phosphorus. Pakistan Journal of Agricultural Research, 34(1), 144-153. [Google Scholar]
  4. Antil, R. S., & Raj, D. (2020). Integrated Nutrient Management for Sustainable Crop Production and Improving Soil Health. In R. S. Meena (Ed.), Nutrient Dynamics for Sustainable Crop Production (pp. 67–101). Springer Singapore. https://doi.org/10.1007/978-981-13-8660-2_3 [Google Scholar]
  5. Baghdadi, A., Halim, R. A., Ghasemzadeh, A., Ramlan, M. F., & Sakimin, S. Z. (2018). Impact of organic and inorganic fertilizers on the yield and quality of silage corn intercropped with soybean. PeerJ, 6, e5280. https://doi.org/10.7717/peerj.5280 [Google Scholar]
  6. Bam, R., Mishra, S. R., Khanal, S., Ghimire, P., & Bhattarai, S. (2022). Effect of biofertilizers and nutrient sources on the performance of mungbean at Rupandehi, Nepal. Journal of Agriculture and Food Research, 10, 100404. https://doi.org/10.1016/j.jafr.2022.100404 [Google Scholar]
  7. Bandyopadhyay, K. K., Misra, A. K., Ghosh, P. K., & Hati, K. M. (2010). Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean. Soil and Tillage Research, 110(1), 115–125. https://doi.org/10.1016/j.still.2010.07.007 [Google Scholar]
  8. Bouyoucos, G. J. (1962). Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agronomy Journal, 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x [Google Scholar]
  9. Chauhan, A., Singh, V. K., Ankur Sharma, & Jeena, K. (2023). Effect of organic and bio fertilizer on growth and yield of soyabean (Glycine max) in doon valley of Uttarakhand. The Pharma Innovation Journal, 12(6), 1601-1605. [Google Scholar]
  10. Chauhan, B. S., & Opeña, J. L. (2013). Effect of Plant Spacing on Growth and Grain Yield of Soybean. American Journal of Plant Sciences, 4(10), 2011–2014. https://doi.org/10.4236/ajps.2013.410251 [Google Scholar]
  11. Chen, L., Figueredo, A., Villani, H., Michajluk, J., & Hungria, M. (2002). Diversity and symbiotic effectiveness of rhizobia isolated from field-grown soybean nodules in Paraguay. Biology and Fertility of Soils, 35(6), 448–457. [Google Scholar]
  12. Devi, K. N., Singh, T. B., Athokpam, H. S., Singh, N. B., & Shamurailatpam, D. (2013). Influence of inorganic, biological, and organic manures on nodulation and yield of soybean (Glycine max Merril L.) and soil properties. Australian Journal of Crop Science, 7(9), 1407-1415. [Google Scholar]
  13. FAO and ITPS (2016). Voluntary guidelines for sustainable soil management (VGSSM), Rome, Italy: Global Soil Partnership. FAO. [Google Scholar]
  14. Faozi, K., Yudono, P., Indradewa, D., & Ma’as, A. (2019). Effectiveness of phosphorus fertilizer on soybean plants in the coastal sands soil. IOP Conference Series: Earth and Environmental Science, 250, 012060. https://doi.org/10.1088/1755-1315/250/1/012060 [Google Scholar]
  15. Gao, F.-L., Che, X.-X., Yu, F.-H., & Li, J.-M. (2019). Cascading effects of nitrogen, rhizobia and parasitism via a host plant. Flora, 251, 62–67. https://doi.org/10.1016/j.flora.2018.12.007 [Google Scholar]
  16. Halwani, M., Reckling, M., Egamberdieva, D., Omari, R. A., Bellingrath-Kimura, S. D., Bachinger, J., & Bloch, R. (2021). Soybean Nodulation Response to Cropping Interval and Inoculation in European Cropping Systems. Frontiers in Plant Science, 12, 638452. https://doi.org/10.3389/fpls.2021.638452 [Google Scholar]
  17. Hati, K. M., Mandal, K. G., Misra, A. K., Ghosh, P. K., & Bandyopadhyay, K. K. (2006). Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Bioresource Technology, 97(16), 2182–2188. https://doi.org/10.1016/j.biortech.2005.09.033 [Google Scholar]
  18. Imran, & Amanullah (2023). Integration of peach (Prunus persica L) remnants in combination with beneficial microbes and phosphorus differ phosphorus use efficiency, agronomic efficiency and partial factor productivity in soybean Vs maize crops. Journal of Plant Nutrition, 46(8), 1745–1756. https://doi.org/10.1080/01904167.2022.2099890 [Google Scholar]
  19. Jackson, M.L. (1967). Soil chemical analysis. Prentices Hall Inc. Engle Wool, CL, USA. 39p. [Google Scholar]
  20. Jaga, P. K., & Sharma, S. (2015). Effect of bio-fertilizer and fertilizers on productivity of soybean. Annals of Plant and Soil Research, 17(2), 171-174. [Google Scholar]
  21. Jaiswal, S. K., Mohammed, M., Ibny, F. Y. I., & Dakora, F. D. (2021). Rhizobia as a Source of Plant Growth-Promoting Molecules: Potential Applications and Possible Operational Mechanisms. Frontiers in Sustainable Food Systems, 4, 619676. https://doi.org/10.3389/fsufs.2020.619676 [Google Scholar]
  22. Kanase, A. A., Mendhe, S. N., Khawale, V. S., Jarande, N. N., & Mendhe, J. T. (2006). Effect of integrated nutrient management and weed biomass addition on growth and yield of soybean. Journal of Soils and Crops, 16(1), 236-239. [Google Scholar]
  23. Khalid, S., Amanullah, & Ahmed, I. (2022). Enhancing Zinc Biofortification of Wheat through Integration of Zinc, Compost, and Zinc-Solubilizing Bacteria. Agriculture, 12(7), 968. https://doi.org/10.3390/agriculture12070968 [Google Scholar]
  24. Khan, I., Amanullah, Jamal, A., Mihoub, A., Farooq, O., Farhan Saeed, M., Roberto, M., Radicetti, E., Zia, A., & Azam, M. (2022). Partial Substitution of Chemical Fertilizers with Organic Supplements Increased Wheat Productivity and Profitability under Limited and Assured Irrigation Regimes. Agriculture, 12(11), 1754. https://doi.org/10.3390/agriculture12111754 [Google Scholar]
  25. Koushal, S., & Singh, P. (2011). Effect of integrated use of fertilizer, FYM and biofertilizer on growth and yield performance on soya bean (Glycine max (L) Merill). Research Journal of Agricultural Science, 43(3), 1-10. [Google Scholar]
  26. Kucey, R. M. N., Janzen, H. H., & Leggett, M. E. (1989). Microbially mediated increases in plant-available phosphorus. Advances in Agronomy, 42, 1-10. [Google Scholar]
  27. Mclean, E. O. (2015). Soil pH and Lime Requirement. In A. L. Page (Ed.), Agronomy Monographs (pp. 199–224). American Society of Agronomy, Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c12 [Google Scholar]
  28. MoALD (Ministry of Agriculture and Livestock Development). (2023a). Statistical Information on Nepalese Agriculture. Available online: https://moald.gov.np/wp-content/uploads/2023/08/Statistical-Information-on-Nepalese-Agriculture-2078-79-2021-22.pdf (accessed on 10 May 2024). [Google Scholar]
  29. MoALD (Ministry of Agriculture and Livestock Development). (2023b). Agriculture and Livestock Diary 2080. Available online: https://pmamp.gov.np/sites/default/files/2023-05/agriculture%20diary%202080.pdf (accessed on 10 May 2024). [Google Scholar]
  30. MoICS (Ministry of Industry, Commerce and Supplies). (2023). International trade. Annual year 2079/80. [Google Scholar]
  31. Mulvaney, M. J., & Devkota, P. (2020). Adjusting Crop Yield to a Standard Moisture Content. SS-AGR-443/AG442, 05/2020 https://doi.org/10.32473/edis-ag442-2020 [Google Scholar]
  32. Nadia, Amanullah, Arif, M., & Muhammad, D. (2023). Improvement in Wheat Productivity with Integrated Management of Beneficial Microbes along with Organic and Inorganic Phosphorus Sources. Agriculture, 13(6), 1118. https://doi.org/10.3390/agriculture13061118 [Google Scholar]
  33. Nagwanshi, A., Dwivedi, A. K., Dwivedi, B. S., & Dwivedi, S. K. (2018). Effect of long-term application of fertilizers and manure on leaf area index, nodulation and yield of soybean in a Vertisol. Journal of Pharmacognosy and Phytochemistry, 7(4), 1-10. [Google Scholar]
  34. Nakei, M. D., Venkataramana, P. B., & Ndakidemi, P. A. (2022). Soybean-Nodulating Rhizobia: Ecology, Characterization, Diversity, and Growth Promoting Functions. Frontiers in Sustainable Food Systems, 6, 824444. https://doi.org/10.3389/fsufs.2022.824444 [Google Scholar]
  35. Nout, R. (2015). Quality, safety, biofunctionality and fermentation control in soya. In Advances in Fermented Foods and Beverages (pp. 409–434). Elsevier. https://doi.org/10.1016/B978-1-78242-015-6.00018-9 [Google Scholar]
  36. Ohyama, T., Tewari, K., Ishikawa, S., Tanaka, K., Kamiyama, S., Ono, Y., Hatano, S., Ohtake, N., Sueyoshi, K., Hasegawa, H., Sato, T., Tanabata, S., Nagumo, Y., Fujita, Y., & Takahashi, Y. (2017). Role of Nitrogen on Growth and Seed Yield of Soybean and a New Fertilization Technique to Promote Nitrogen Fixation and Seed Yield. In M. Kasai (Ed.), Soybean—The Basis of Yield, Biomass and Productivity. InTech. https://doi.org/10.5772/66743 [Google Scholar]
  37. Olsen, S.R., Cole, C.V. and Watanabe, F.S. (1954) Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular No. 939, US Government Printing Office, Washington DC. Available online: https://ia803207.us.archive.org/21/items/estimationofavai939olse/estimationofavai939olse.pdf (accessed on 10 May 2024). [Google Scholar]
  38. Ponmurugan, P., & Gopi, C. (2006). Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and forage crops. Journal of Agronomy, 5(4), 600–604. https://doi.org/10.3923/ja.2006.600.604 [Google Scholar]
  39. Rajani, A. V. (2019). Forms of potassium. Self-published document. https://doi.org/10.13140/RG.2.2.26647.11685 [Google Scholar]
  40. Raza, M. A., Gul, H., Yang, F., Ahmed, M., & Yang, W. (2021). Growth Rate, Dry Matter Accumulation, and Partitioning in Soybean (Glycine max L.) in Response to Defoliation under High-Rainfall Conditions. Plants, 10(8), 1497. https://doi.org/10.3390/plants10081497 [Google Scholar]
  41. Selim, M. M. (2020). Introduction to the Integrated Nutrient Management Strategies and Their Contribution to Yield and Soil Properties. International Journal of Agronomy, 2821678, 1–14. https://doi.org/10.1155/2020/2821678 [Google Scholar]
  42. Sharma, A., Sirothiya, P., Agrawal, S. B., & Shrivastava, P. (2018). Effect of integrated nutrient management on growth, yield and yield attributes of soybean under rainfed situations of Madhya Pradesh. Journal of Pharmacognosy and Phytochemistry, 7(5), 757–762. [Google Scholar]
  43. Shen, G., Ju, W., Liu, Y., Guo, X., Zhao, W., & Fang, L. (2019). Impact of Urea Addition and Rhizobium Inoculation on Plant Resistance in Metal Contaminated Soil. International Journal of Environmental Research and Public Health, 16(11), 1955. https://doi.org/10.3390/ijerph16111955 [Google Scholar]
  44. Sikka, R., Singh, D., Deol, J. S., & Kumar, N. (2018). Effect of integrated nutrient and agronomic management on growth, productivity, nutrient uptake and soil residual fertility status of soybean. Agricultural Science Digest - A Research Journal, 8(03). https://doi.org/10.18805/ag.LR-3994 [Google Scholar]
  45. Tagliapietra, E. L., Streck, N. A., Da Rocha, T. S. M., Richter, G. L., Da Silva, M. R., Cera, J. C., Guedes, J. V. C., & Zanon, A. J. (2018). Optimum Leaf Area Index to Reach Soybean Yield Potential in Subtropical Environment. Agronomy Journal, 110(3), 932–938. https://doi.org/10.2134/agronj2017.09.0523 [Google Scholar]
  46. Tena, W., Wolde-Meskel, E., & Walley, F. (2016). Symbiotic Efficiency of Native and Exotic Rhizobium Strains Nodulating Lentil (Lens culinaris Medik.) in Soils of Southern Ethiopia. Agronomy, 6(1), 11. https://doi.org/10.3390/agronomy6010011 [Google Scholar]
  47. USDA. (2018). National Nutrient Database for Standard Reference Legacy Release, 2018. Agricultural Research Service (ARS). Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/174270/nutrients (accessed on 10 May 2024). [Google Scholar]
  48. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003 [Google Scholar]
  49. Wang, Q., Bai, W., Sun, Z. H., Zhang, D., Zhang, Y., Wang, R., Evers, J. B., Stomph, T. J., van der Werf, W., Feng, C. H., & Zhang, L. (2021). Does reduced intraspecific competition of the dominant species in intercrops allow for a higher population density? Food and Energy Security, 10(2), 285–298. [Google Scholar]
  50. Watson, D. J. (1947). Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years. Annals of Botany, 11(1), 41–76. https://doi.org/10.1093/oxfordjournals.aob.a083148 [Google Scholar]
  51. Watson, D. J. (1952). The Physiological Basis of Variation in Yield. In Advances in Agronomy (Vol. 4, pp. 101–145). Elsevier. https://doi.org/10.1016/S0065-2113(08)60307-7 [Google Scholar]
  52. Wei, W., Guan, D., Ma, M., Jiang, X., Fan, F., Meng, F., Li, L., Zhao, B., Zhao, Y., Cao, F., Chen, H., & Li, J. (2023). Long-term fertilization coupled with rhizobium inoculation promotes soybean yield and alters soil bacterial community composition. Frontiers in Microbiology, 14, 1161983. https://doi.org/10.3389/fmicb.2023.1161983 [Google Scholar]
  53. Zhou, X. B., Chen, Y. H., & Ouyang, Z. (2017). Row spacing effect on leaf area development, light interception, crop growth and grain yield of summer soybean crops in Northern China. Frontiers of Agriculture and Food Technology, 7(6), 1-8. [Google Scholar]

Similar Articles

1-10 of 72

You may also start an advanced similarity search for this article.