Abstract
To elucidate improved germplasm for grain yield and seed protein content, ten soybean accessions were evaluated in a replicated randomized complete block design. This study reveals substantial phenotypic variation, with protein content spanning 34.48% to 42.10%. PK-7394 recorded the highest protein level (42.10%) but showed reduced grain yield, whereas Hardee produced a maximum yield of 3.89 t ha⁻¹. TGX-1990-114FN combined high protein content (40.98%) with competitive yield (3.85 t ha⁻¹), thereby corroborating its potential as a prime genetic resource. Correlational analyses revealed positive associations between grain yield and nodule count (r = 0.55) as well as seed diameter (r = 0.16). Protein content exhibited a high Shannon-Wiener diversity index (1.09), highlighting variability across accessions. By integrating high yield and enhanced protein content, TGX-1990-114FN emerged as an optimal genetic resource for breeding programs focused on developing high-yielding and nutritionally enriched soybean varieties. Such findings offer valuable insights into advancing agricultural productivity and addressing global food security challenges.
Keywords
References
- Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), 433-459. [Google Scholar]
- Anand, K. J., Shrivastava, M. K., Amrate, P. K., Patel, T., & Singh, Y. (2024). Morphological Characterization-based Optimal Trait Selection for Improving Yield and Stability of Soybean (Glycine max L. Merrill). International Journal of Bio-Resource & Stress Management, 15(10), 1-10. [Google Scholar]
- Assefa, Y., Bajjalieh, N., Archontoulis, S., Casteel, S., Davidson, D., Kovács, P., Naeve, S., & Ciampitti, I. A. (2018). Spatial Characterization of Soybean Yield and Quality (Amino Acids, Oil, and Protein) for United States. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-32895-0 [Google Scholar]
- Basnet, B. (2024a). Deciphering genetic variability and phenotype expression, assessing drought stress tolerance and multi-trait stability index of (Vigna radiata) genotypes in Chitwan, Nepal. Cogent Food & Agriculture, 10(1), 2417843. https://doi.org/10.1080/23311932.2024.2417843 [Google Scholar]
- Basnet, B. (2024b). Deciphering genetic variability and phenotype expression, assessing drought stress tolerance and multi-trait stability index of (Vigna radiata) genotypes in Chitwan, Nepal. Cogent Food and Agriculture, 10(1), 2417843. https://doi.org/10.1080/23311932.2024.2417843 [Google Scholar]
- Basnet, B., Upreti, U., & Thapaliya, K. P. (2024a). Genotypic variations in postfertility traits and yield components of mung bean (Vigna radiata (L.) R. Wilczek) germplasms in Chitwan, Nepal. Heliyon, 10(20), e39226. https://doi.org/10.1016/j.heliyon.2024.e39226 [Google Scholar]
- Chakelie, G., Atnaf, M., Abate, A. (2024). Assessment of Genetic Variability in Soybean (Glycine max (L.) Merrill) Genotypes at Gondar, Ethiopia. Ethiopian Journal of Agricultural Sciences, 34(4), 72-99. [Google Scholar]
- Chiemeke, F. K., Olasanmi, B., Agre, P. A., Mushoriwa, H., Chigeza, G., & Abebe, A. T. (2024). Genetic Diversity and Population Structure Analysis of Soybean [Glycine max (L.) Merrill] Genotypes Using Agro-Morphological Traits and SNP Markers. Genes, 15(11), 1373. https://doi.org/10.3390/GENES15111373/S1 [Google Scholar]
- Ciampitti, I. A., de Borja Reis, A. F., Córdova, S. C., Castellano, M. J., Archontoulis, S. V., Correndo, A. A., Antunes De Almeida, L. F., & Moro Rosso, L. H. (2021). Revisiting Biological Nitrogen Fixation Dynamics in Soybeans. Frontiers in Plant Science, 12, 727021. https://doi.org/10.3389/FPLS.2021.727021 [Google Scholar]
- DB, G., R., D., S, S., A., S., & Kumar, S. (2014). Grain Legumes in Nepal: Present Scenario and Future Prospects. World Journal of Agricultural Research, 2(5), 216–222. https://doi.org/10.12691/WJAR-2-5-3 [Google Scholar]
- Fattah, A., Negara, A., Supriadi, K., Hannan, M. F. I., Ardjanhar, A., Beding, P. A., Najamuddin, E., Pustika, A. B., Susilawati, S., Nonci, N., Latifah, E., Arifin, Z., Istiqomah, N., Udiarto, B. K., & Dewayani, W. (2024). Characteristics of several soybean varieties (Glycine max L.) and weed management systems in an effort to increase productivity in low land rice. Frontiers in Sustainable Food Systems, 8, 1418759. https://doi.org/10.3389/FSUFS.2024.1418759 [Google Scholar]
- Gharti, D. B., Darai, R., Subedi, S., Sarker, A., & Kumar, S. (2014). Grain legumes in Nepal: Present scenario and future prospects. World Journal of Agricultural Research, 2(5), 216-222. [Google Scholar]
- Ghimire, N. H., Dhakal, K. H., Pandey, M. P., Joshi, B. K., Khanal, B., Nh, G., Dhakal, K. H., Pandey, M. P., Joshi, B. K., & Khanal, B. (2024). Assessment of Agronomic Traits and Molecular Diversity Using SSR Markers in Soyabean, (Glycine Max (L.) Merr. Accessions in Nepal. Agronomy Journal of Nepal, 8(1), 119–134. https://doi.org/10.3126/AJN.V8I1.70793 [Google Scholar]
- Ghimire, N. H., Dhakal, K. H., Pandey, M. P., Joshi, B. K., Khanal, B. (2024). Assessment of Agronomic Traits and Molecular Diversity Using SSR Markers in Soyabean, (Glycine Max (L.) Merr. Accessions in Nepal. Agronomy Journal of Nepal, 8, 119–134. https://doi.org/10.3126/ajn.v8i1.70793 [Google Scholar]
- Gomez, K. A., & Gomez, A. A. (2012). Statistical procedures for agricultural research. John wiley & sons. [Google Scholar]
- Grain Legumes in Nepal: Present Scenario and Future Prospects. (2023). Retrieved April 4, 2025, from https://pubs.sciepub.com/wjar/2/5/3/ [Google Scholar]
- Guo, B., Sun, L., Jiang, S., Ren, H., Sun, R., Wei, Z., Hong, H., Luan, X., Wang, J., Wang, X., Xu, D., Li, W., Guo, C., & Qiu, L. J. (2022a). Soybean genetic resources contributing to sustainable protein production. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 135(11), 4095. https://doi.org/10.1007/S00122-022-04222-9 [Google Scholar]
- Kholmurodova, G., Tangirova, G., Rakhmankulov, M., Yuldasheva, R. (2023). Analysis of protein and oil content in seeds of soybean collection varieties. In E3S Web of Conferences (Vol. 377, p. 03016). EDP Sciences. [Google Scholar]
- Kong, W., Wei, M., Khan, N., Liang, J., Han, D., & Zhang, H. (2024). Assessing sustainable future of import-independent domestic soybean production in China: policy implications and projections for 2030. Frontiers in Sustainable Food Systems, 8, 1387609. https://doi.org/10.3389/FSUFS.2024.1387609 [Google Scholar]
- Lynch, H., Johnston, C., & Wharton, C. (2018). Plant-Based Diets: Considerations for Environmental Impact, Protein Quality, and Exercise Performance. Nutrients, 10(12), 1841. https://doi.org/10.3390/NU10121841 [Google Scholar]
- Manandhar, D. (2021). Review Article on Status of Soybean Production in Nepal. Reviews in Food and Agriculture, 2(2), 43–45. https://doi.org/10.26480/rfna.02.2021.43.45 [Google Scholar]
- Nair, R. M., Yan, M. rong, Vemula, A. K., Rathore, A., van Zonneveld, M., & Schafleitner, R. (2023). Development of core collections in soybean on the basis of seed size. Legume Science, 5(1), 1–6. https://doi.org/10.1002/leg3.158 [Google Scholar]
- Sharma, S., Kaur, M., Goyal, R., & Gill, B. S. (2011). Physical characteristics and nutritional composition of some new soybean (Glycine max (L.) Merrill) genotypes. Journal of Food Science and Technology, 51(3), 551. https://doi.org/10.1007/S13197-011-0517-7 [Google Scholar]
- Singh, A., Singh, A., & Mahama, A. A. (2023). Chapter 6: Breeding Methods. Iowa State University Digital Press. [Google Scholar]
- Soybean crop rotation: A “3-in-1” solution for sustainable agricultural production. (2025). Retrieved May 28, 2025, from https://vietnamagriculture.nongnghiep.vn/soybean-crop-rotation-a-3-in-1-solution-for-sustainable-agricultural-production-d753563.html [Google Scholar]
- Tamagno, S., Sadras, V. O., Haegele, J. W., Armstrong, P. R., & Ciampitti, I. A. (2018). Interplay between nitrogen fertilizer and biological nitrogen fixation in soybean: implications on seed yield and biomass allocation. Scientific Reports, 8(1), 17502. https://doi.org/10.1038/s41598-018-35672-1 [Google Scholar]
- USDA Economic Research Service Corn & Soybean Projections to 2030 | Ohio Ag Manager. (n.d.). Retrieved April 4, 2025, from https://u.osu.edu/ohioagmanager/2021/11/11/usda-economic-research-service-corn-soybean-projections-to-2030/ [Google Scholar]
- Xiao, X., Zou, P. R., Hu, F., Zhu, W., & Wei, Z. J. (2023). Updates on Plant-Based Protein Products as an Alternative to Animal Protein: Technology, Properties, and Their Health Benefits. Molecules, 28(10), 4016. https://doi.org/10.3390/MOLECULES28104016 [Google Scholar]
- Zuffo, A. M., Alcântara Neto, F. de, Zoz, T., Ratke, R. F., Aguilera, J. G., & Teodoro, P. E. (2020). Correlations and path analysis in agronomic traits of soybeans under defoliation. Bioscience Journal, 36(5), 1629–1637. https://doi.org/10.14393/BJ-v36n5a2020-48220 [Google Scholar]

