Abstract
An experiment was conducted from February 19, 2022, to July 4, 2022, in the farmer's field of Itahari Sub-metropolitan city in Nepal under well water and drought conditions to screen thirty drought-tolerant spring rice (Oryza sativa L.) genotypes using various drought tolerant indices for its cultivation under rainfed and drought areas. Analysis of variance revealed that grain yield under both conditions were significantly different and yield under well-watered condition was higher than yield under drought condition. The greater value of tolerance index (TOL) was reported in Chaite-2 and IR-80991-B330-0-2 and the minimum value of TOL was reported in IRE16L1661 and IR16L1004. The lowest value of stress susceptibility index (SSI) was reported in IRE16L1661, the maximum value of yield susceptibility index (YSI) was reported in IRE16L1661, and the maximum values of mean productivity index (MP), geometrical mean productivity (GMP), and stress tolerance index (STI) were reported in IRE 1621661. Correlation analysis revealed that the high-yielding genotype under well-watered conditions also yielded higher under-stress conditions. For grain yield, analysis of variance and principal component analysis revealed that IRE 1621661 is suitable for both conditions and genotype IRE16L1661 is stable under drought conditions based on drought tolerance indices. Thus, these two genotypes can be recommended under drought stress in the inner plains of Nepal with appropriate agronomic practices.
Keywords
References
- Abdolshahi, R., Safarian, A., Nazari, M., Pourseyedi, S., & Mohamadi-Nejad, G. (2013). Screening drought-tolerant genotypes in bread wheat (Triticum aestivum L.) using different multivariate methods. Archives of Agronomy and Soil Science, 59(5), 685–704. https://doi.org/10.1080/03650340.2012.667080 [Google Scholar]
- Adhikari, B. B., & Haefele, S. M. (2014). Characterization of cropping systems in the western mid hills of Nepal: Constraints and Opportunities. International Journal of Research and Innovations in Earth Science, 1(1), 20–26. [Google Scholar]
- Adhikari, B. B., Mehera, B., & Haefele, S. M. (2018). Selection of drought tolerant rice varieties for the western mid hills of Nepal. Journal of the Institute of Agriculture and Animal Science, 33, 195–206. https://doi.org/10.3126/jiaas.v33i0.20705 [Google Scholar]
- Adhikari, M., Adhikari, N. R., Sharma, S., Gairhe, J., Bhandari, R. R., & Paudel, S. (2019). Evaluation of drought tolerant rice cultivars using drought tolerant indices under water stress and irrigated condition. American Journal of Climate Change, 08(02), 228–236. https://doi.org/10.4236/ajcc.2019.82013 [Google Scholar]
- Amgai, R. B. (2020). Evaluation of Nepalese rice for drought tolerant characteristics. In: Proceedings of 29th National Summer Crops Workshop At: Lumle, Kaski, Nepal. [Google Scholar]
- Bouslama, M., & Schapaugh, W. T. (1984). Stress Tolerance in Soybeans. I. Evaluation of Three Screening Techniques for Heat and Drought Tolerance. Crop Science, 24, 933-937. https://doi.org/10.2135/cropsci1984.0011183X002400050026x [Google Scholar]
- Carvalho, M., Novaes, D., Santos, B., Gramacho, K., Lopes, U., Gomes, A., & Valle, R. (2022). Screening Cacao germplasm for drought tolerance. Agrotrópica (Itabuna), 34(1), 5–18. https://doi.org/10.21757/0103-3816.2022v34n1p5-18 [Google Scholar]
- Dawe, D. C., Hardy, B., & Hettel, G. P. (2002). Source Book for the Most Important Economic Activity on Earth. CABI Publishing, Wallingford, UK. pp. 256. [Google Scholar]
- Dawe, D., Pandey, S., & Nelson, A. D. (2010). Emerging trends and spatial patterns of rice production. In: Rice in the Global Economy: Strategic Research and Policy Issues for Food Security, International Rice Research Institute, Los Baños, Philippines. pp. 15–35. [Google Scholar]
- Fischer, R.A., & Maurer, R. (1978). Drought Resistance in Spring Wheat Cultivars, I. Grain Yield Responses. Australian Journal of Agricultural Research, 29, 897-912. https://doi.org/10.1071/AR9780897 [Google Scholar]
- Gadal, N., Shrestha, J., Poudel, M. N. and Pokharel, B. (2019). A review on production status and growing environments of rice in Nepal and in the world. Archives of Agriculture and Environmental Science, 4(1): 83-87, https://doi.org/10.26832/24566632.2019.0401013 [Google Scholar]
- Ghimire, N. H., and Mahat, P. M. (2019). Genetic Variability and Correlation Coefficients of Major Traits in Cold Tolerance Rice (Oriza sativa L.) Under Mountain Environment of Nepal. International Journal of Applied Sciences and Biotechnology, 7, 445–452. https://doi.org/10.3126/ijasbt.v7i4.26922 [Google Scholar]
- Hussain, T., Hussain, N., Ahmed, M., Nualsri, C., & Duangpan, S. (2021). Responses of lowland rice genotypes under terminal water stress and identification of drought tolerance to stabilize rice productivity in southern Thailand. Plants, 10(12). https://doi.org/10.3390/plants10122565 [Google Scholar]
- Kamrani, M., Hoseini, Y., & Ebadollahi, A. (2018). Evaluation for heat stress tolerance in durum wheat genotypes using stress tolerance indices. Archives of Agronomy and Soil Science, 64(1), 38–45. https://doi.org/10.1080/03650340.2017.1326104 [Google Scholar]
- Kandel, B. P., Joshi, L. P., Sharma, S., Adhikari, P., Koirala, B., & Shrestha, K. (2022). Drought tolerance screening of rice genotypes in mid-hills of Nepal using various drought indices. Acta Agriculturae Scandinavica, Section B — Soil and Plant Science, 72(1), 744–750. https://doi.org/10.1080/09064710.2022.2072382 [Google Scholar]
- Kumar, A., Verulkar, S. B., Mandal, N. P., Variar, M., Shukla, V. D., Dwivedi, J. L., Singh, B. N., Singh, O. N., Swain, P., Mall, A. K., Robin, S., Chandrababu, R., Jain, A., Haefele, S. M., Piepho, H. P., & Raman, A. (2012). High-yielding, drought-tolerant, stable rice genotypes for the shallow rainfed lowland drought-prone ecosystem. Field Crops Research, 133, 37–47. https://doi.org/10.1016/j.fcr.2012.03.007 [Google Scholar]
- Lin, H. I., Yu, Y. Y., Wen, F. I., & Liu, P. T. (2011). Status of food security in east and southeast Asia and challenges of climate change. Climate, 10(3), 1-35. https://doi.org/10.3390/cli10030040 [Google Scholar]
- Majumder, R. R., Hore, T. K., Kader, M. A., & Aditya, T. L. (2016). Genotype and environment interaction of drought tolerant rice genotypes evaluated in drought prone areas of Bangladesh. Journal of the Bangladesh Agricultural University, 14(1), 23–30. [Google Scholar]
- Mau, Y. S., Ndiwa, A. S. S., Oematan, S. S., & Markus, J. E. R. (2019). Drought tolerance indices for selection of drought tolerant, high yielding upland rice genotypes. Australian Journal of Crop Science, 13(1), 170–178. https://doi.org/10.21475/ajcs.19.13.01.p1778 [Google Scholar]
- MoLAD (2021). Statistical Information Statistical Information. Hariharbhawan, Kathmandu, Nepal. [Google Scholar]
- Muthuramu, S., & Ragavan, T. (2020). Studies on indices and morphological traits for drought tolerance in rainfed rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 11(1), 1–5. https://doi.org/10.37992/2020.1101.001 [Google Scholar]
- Ouk, M., Basnayake, J., Tsubo, M., Fukai, S., Fischer, K. S., Cooper, M., & Nesbitt, H. (2006). Use of drought response index for identification of drought tolerant genotypes in rainfed lowland rice. Field Crops Research, 99(1), 48–58. https://doi.org/10.1016/j.fcr.2006.03.003 [Google Scholar]
- Pavithra, S., & Vengadessan, V. (2020). Selection for Drought Tolerance in Rice Genotypes Based on Principal Components and Selection Indices. Electronic Journal of Plant Breeding, 11(4), 1032–1036. https://doi.org/10.37992/2020.1104.168 [Google Scholar]
- Poudel, P. B., Poudel, M. R., & Puri, R. R. (2021). Evaluation of heat stress tolerance in spring wheat (Triticum aestivum L.) genotypes using stress tolerance indices in western region of Nepal. Journal of Agriculture and Food Research, 5. https://doi.org/10.1016/j.jafr.2021.100179 [Google Scholar]
- Puri, R. R., Tripathi, S., Bhattarai, R., Dangi, S. R., & Pandey, D. (2020). Wheat variety improvement for climate resilience. Asian Journal of Research in Agriculture and Forestry, 21–27. https://doi.org/10.9734/ajraf/2020/v6i230101 [Google Scholar]
- Rajapur, L. (2021). Effect of number of seedlings per hill on performance and yield of spring rice (Oryza sativa L.) in Rajapur, Bardiya, Nepal. 2(1), 61-67. https://doi.org/10.52804/ijaas2021.217 [Google Scholar]
- Raman, A., Verulkar B, S., Mandal P, N., Variar, M., Shukla D, V., Dwivedi, J., Singh N, O., Swain, P., Mall, A., Robin, S., Chandrababu, R., Jain, A., Ram, T., Hittalmani, S., Haefele, S., Piepho, H.-P., & Kumar, A. (2012). Drought yield index to select high yielding rice lines under different drought stress severities. Rice, 5, 31. https://doi.org/10.1186/1939-8433-5-31 [Google Scholar]
- Rosielle, A. A., & Hamblin, J. (1981). Theoretical Aspects of Selection for Yield in Stress and Non-Stress Environment. Crop Science, 21, 943-946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x [Google Scholar]
- Garg, H. S., & Bhattacharya, C. (2017). Drought tolerance indices for screening some of rice genotypes. International Journal of Advanced Biological Research, 7(4), 671-674. [Google Scholar]
- Singh, S. K., Singh, M., Raj Vennela, P., Singh, D. K., N. Kujur, S., & Kumar, D. (2018). Studies on genetic variability, heritability and genetic advance for yield and yield components in drought tolerant rice (Oryza sativa L.) landraces. International Journal of Current Microbiology and Applied Sciences, 7(3), 299–305. https://doi.org/10.20546/ijcmas.2018.703.035 [Google Scholar]
- Tiwari, D. N., Tripathi, S. R., Tripathi, M. P., Khatri, N., & Bastola, B. R. (2019). Genetic variability and correlation coefficients of major traits in early maturing rice under rainfed lowland environments of Nepal. Advances in Agriculture, 2019, 5975901. https://doi.org/10.1155/2019/5975901 [Google Scholar]
- Ullah, A., and Shakeel, A. (2019). Assessment of drought tolerance in some cotton genotypes based on drought tolerance indices. The Journal of Animal and Plant Sciences, 29(4), 998-1009. [Google Scholar]

