Impact of Rainfall Variations on the Production of Major Crops: Sorghum (Sorghum bicolor) and Maize (Zea mays) in Burao District, Somaliland

Open Access
Download PDF
AgroEnvironmental Sustainability
Sharmake Mohamed Ahmed , Abdullahi Ali Ibrahim , Fathi Abdirahman Farah , Abdiaziz Hassan Nur

Abstract

This study examines the impact of rainfall variability on the production of major crops sorghum and maize in Burao District, Somaliland. Given that agriculture in the region is predominantly rainfed, fluctuations in rainfall patterns significantly affect crop yields and food security. The study reviews existing literature and data to assess trends in rainfall variations and their consequences for agricultural productivity. Findings indicate that inconsistent rainfall, prolonged dry spells, and drought conditions have led to decreased crop yields, affecting both food availability and farmer livelihoods. Additionally, farmers in the region face multiple constraints, including limited access to irrigation, financial resources, and modern agricultural techniques. The study highlights the necessity of climate adaptation strategies, such as drought-resistant crop varieties, improved water management, and policy interventions, to mitigate the impacts of climate variability. Strengthening agricultural extension services and adopting climate-smart farming practices are crucial to ensuring sustainable crop production in Burao District.

Keywords

agricultural productivity constraints major crops rainfall variations

References

  1. Abdisa, T., Diga, G., & Tolessa, A. (2022). Impact of climate variability on rain-fed maize and sorghum yield among smallholder farmers. Cogent Food & Agriculture, 8, 1-10. https://doi.org/10.1080/23311932.2022.2057656. [Google Scholar]
  2. Abdi-Soojeede, M. I. (2018). Crop production challenges faced by farmers in Somalia: A case study of Afgoye district farmers. Agricultural Sciences, 9(8), 1032-1046. https://doi.org/10.4236/as.2018.98071 [Google Scholar]
  3. Abukar, H. M. (2023). Hudur district, Bokool region of Somalia: Impact of drought on sorghum production. African Multidisciplinary Journal of Development, 12(3), 185-193. https://doi.org/10.59568/AMJD-2023-12-3-16 [Google Scholar]
  4. Ahmed, A. (2023). Effects of Rainfall Variability on Maize Production in Afgooye District, Lower Shebelle Region, Somalia. Asian Journal of Research in Crop Science, 8(3), 167. https://doi.org/10.9734/ajrcs/2023/v8i3167 [Google Scholar]
  5. Ali, F. (1975). Effects of Rainfall on Yield of Grain Sorghum in the Sudan. Experimental Agriculture, 11, 167-171. https://doi.org/10.1017/S0014479700006669 [Google Scholar]
  6. Ali, M. A., Karim, M. R., & Osman, M. A. (2023). Constraints faced by the small-scale farmers in the production of major crops sorghum and maize in Awdal Region, Somaliland. Asian Journal of Research in Crop Science, 8(2), 1-10. https://doi.org/10.9734/AJRCS/2023/v8i2159 [Google Scholar]
  7. Aliyari, F., Bailey, R., & Arabi, M. (2021). Appraising climate change impacts on future water resources and agricultural productivity in agro-urban river basins. Science of the Total Environment, 788, 147717. https://doi.org/10.1016/j.scitotenv.2021.147717 [Google Scholar]
  8. Al-Kilani, M. (2024). Agricultural land measures for climate change adaptation in arid regions: Can the farmers do it alone?. Journal of Aridland Agriculture, 10, 82-93. https://doi.org/10.25081/jaa.2024.v10.7945 [Google Scholar]
  9. AWF (2014). Somaliland Water Resources Management and Investment Plan. Available online: https://www.africanwaterfacility.org/en/projects/somaliland-water-resources-management-and-investment-plan (accessed on 10 January, 2025). [Google Scholar]
  10. Becker, R., Schulz, S., Merz, R., aus der Beek, T., & Schüth, C. (2020). Effects of temperature and water stress on agricultural productivity in a semi-arid irrigation system under changing climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8144, https://doi.org/10.5194/egusphere-egu2020-8144 [Google Scholar]
  11. Chander, G., Wani, S., Maheshwer, D., Hemalatha, P., Sahrawat, K., Krishnappa, K., Sawargaonkar, G., Anantha, K., Sudi, R., Jangawad, L., Rao, C., Pardhasaradhi, G., & Jat, R. (2013). Managing soil fertility constraints in market-led shift to high value agriculture for benefiting smallholders in the semi-arid tropics. Journal of SAT Agricultural Research, 11, 1-11. [Google Scholar]
  12. Dennett, M., Elston, J., & Speed, C. (1981). Rainfall and crop yields in seasonally arid West Africa. Geoforum, 12, 203-209. https://doi.org/10.1016/0016-7185(81)90021-X [Google Scholar]
  13. Eze, J. (2023). Impact of Land use and land cover change on Agricultural Productivity in Semi-Arid Region of Nigeria. BADEGGI Journal of Agricultural Research and Environment. https://doi.org/10.35849/bjare202303/149 [Google Scholar]
  14. FAO (2016). Boosting Resilience and Adaptation to Climate Change. Available online: https://www.fao.org/geospatial/projects/detail/en/c/1651391/ (accessed on 10 January, 2025). [Google Scholar]
  15. FAO (2020). Improving sustainable livelihoods in dryland areas. Available online: https://www.fao.org/family-farming/detail/en/c/1620553/ (accessed on 10 January, 2025). [Google Scholar]
  16. FAO-FSNAU (2022). Agricultural production statistics 2000–2022. FAO [Google Scholar]
  17. FAO-SWALIM. (2024). Somalia Rainfall Forecast – Issued 22 November 2024. FAO-SWALIM. Available online: https://www.faoswalim.org/content/somalia-rainfall-forecast-%E2%80%93-issued-22-november-2024 (accessed on 10 January, 2025). [Google Scholar]
  18. FSNAU (2021). Somalia Food Security Outlook. Available online: https://fsnau.org/downloads/Somalia-Food-Security-Outlook-October-2020.pdf (accessed on 10 January, 2025). [Google Scholar]
  19. IFAD (2021). Rural Development Report 2021. Available online: https://www.ifad.org/en/w/publications/rural-development-report-2021 (accessed on 10 January, 2025). [Google Scholar]
  20. IFPRI (2021). 2021 Global food policy report: Transforming food systems after COVID-19: Synopsis. Available online: https://ebrary.ifpri.org/digital/collection/p15738coll2/id/134344/ (accessed on 10 January 2025). [Google Scholar]
  21. Ikpe, E., & Njeri, S. (2021). Landmine Clearance and Peacebuilding: Evidence from Somaliland. Journal of Peacebuilding and Development, 17(1), 91-107. [Google Scholar]
  22. IPCC (2019). Climate Change and Land. Retrieved: https://www.ipcc.ch/srccl/ (accessed on 10 January 2025). [Google Scholar]
  23. Ivanov, O., Utenkov, G., & Ivanova, T. (2019). Mechanical and technological support the efficiency of arid farming. Agricultural Machinery and Technologies, 12(1), 1-10. https://doi.org/10.22314/2073-7599-2018-13-1-34-40 [Google Scholar]
  24. Keshavarz, M., & Karami, E. (2013). Institutional adaptation to drought: the case of Fars Agricultural Organization. Journal of Environmental Management, 127, 61-80. https://doi.org/10.1016/j.jenvman.2013.04.032 [Google Scholar]
  25. Kumar, S., Craufurd, P., Haileslassie, A., Ramilan, T., Rathore, A., & Whitbread, A. (2019). Farm typology analysis and technology assessment: An application in an arid region of South Asia. Land Use Policy, 88, 1-10. https://doi.org/10.1016/J.LANDUSEPOL.2019.104149 [Google Scholar]
  26. Kumawat, S. R., Reager, M. L., & Deora, N. S. (2011). A study on Constraints responsible for adoption of the arid fruits cultivation. Journal of Progressive Agriculture, 2(1), 15-18. [Google Scholar]
  27. Msongaleli, B., Tumbo, S., Kihupi, N., & Rwehumbiza, F. (2017). Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania. International Scholarly Research Notices, 2017, 2506946. https://doi.org/10.1155/2017/2506946 [Google Scholar]
  28. Ogallo, L. A., Ouma, G., & Omondi, P. (2017). Changes in rainfall and surface temperature over lower Jubba, Somalia. Journal of Climate, 1(2), 1-10. [Google Scholar]
  29. Reddy, V., Shiferaw, B., Bantilan, M., Wani, S., & Sreedevi, T. (2007). Collective Action for Integrated Watershed Management in Semi-Arid India: Strategic Policy and Institutional Options. Strategic Assessments and Development Pathways for Agriculture in the Semi-Arid Tropics. Monograph. Available online: http://oar.icrisat.org/id/eprint/3895 (accessed on 10 January 2025). [Google Scholar]
  30. Rees, D. J., Omar, A. M., & Rodol, O. (1991). Implications of the rainfall climate of southern Somalia for semi-mechanized rain-fed crop production. Agricultural and forest meteorology, 56(1-2), 21-33. [Google Scholar]
  31. ReliefWeb (2023). Somaliland: Enhancing resilience and food security through sustainable agricultural solutions. Available online: https://reliefweb.int/report/somalia/somaliland-enhancing-resilience-and-food-security-through-sustainable-agricultural-solutions (accessed on 10 January, 2025). [Google Scholar]
  32. Ryan, J. G., & Spencer, D. C. (2001). Future challenges and opportunities for agricultural R&D in the semi-arid tropics. International Crops Research Institute for the Semi-Arid Tropics. Monograph. Available online: http://oar.icrisat.org/id/eprint/1107 (accessed on 10 January 2025). [Google Scholar]
  33. Samatar, E. H. (2024). The influence of climate change on crop production: Evidence from Somalia. Edelweiss Applied Science and Technology, 8(4), 1428-1447. [Google Scholar]
  34. Sanders, J., & Vitale, J. (1998). Developing Technology For Agriculture In Sub-Saharan Africa: Evolution Of Ideas And Some Critical Questions. Conference Proceeding. http://doi.org/10.22004/ag.econ.187676 [Google Scholar]
  35. Sanders, J., Ramaswamy, S., & Shapiro, B. (1997). Technology Development for Semi-Arid Sub-Saharan Africa: Theory, Performance and Constraints. Occasional Paper Series No. 7 198203, International Association of Agricultural Economists. [Google Scholar]
  36. Sanders, J., Shapiro, B., & Ramaswamy, S. (1998). A Strategy for Technology Development for Semi-Arid Sub-Saharan Africa. Outlook on Agriculture, 27, 157-161. https://doi.org/10.1177/003072709802700305 [Google Scholar]
  37. Sarni, C., Zoubeidi, M., Faci, M., & Bencherif, S. (2024). Technical and economic evaluation of the olive oil value chain in the semi-arid zones: the case of the Tiaret region (western Algeria). New Medit, Mediterranean Journal of Economics, Agriculture, Environment and Food, 2, 111. https://doi.org/10.30682/nm2402h [Google Scholar]
  38. Sharmake, M. A., Sultan, K., Zaman, Q. U., Rehman, R., & Hussain, A. (2022). Decadal impacts of climate change on rainfed agriculture community in Western Somaliland, Africa. Sustainability, 15(1), 421. [Google Scholar]
  39. Singh, R., Dogra, A., Sarker, A., Saxena, A., & Singh, B. (2018). Technology gap, constraint analysis and improved production technologies for yield enhancement of barley (Hordeum vulgare) and chickpea (Cicer arietinum) under arid conditions of Rajasthan. The Indian Journal of Agricultural Sciences, 88(2), 1-10. https://doi.org/10.56093/ijas.v88i2.79207 [Google Scholar]
  40. The Pharo Foundation, (2023). Somaliland Agriculture Productivity Enhancement Programme. Available online: https://www.pharofoundation.org/somaliland-agriculture-productivity-enhancement-programme (accessed on 10 January, 2025). [Google Scholar]
  41. Thomson, J. T., Waldstein, A. S., & Wiese, K. (1987). Institutional constraints on the transfer of agricultural and complementary resource-conservation technologies appropriate for semi-arid Africa (No. PB-89-107346/XAB). Associates in Rural Development, Inc., Burlington, VT (USA). [Google Scholar]
  42. Tolosa, A. A., Dadi, D. K., Mirkena, L. W., Erena, Z. B., & Liban, F. M. (2023). Impacts of climate variability and change on sorghum crop yield in the babile district of eastern Ethiopia. Climate, 11(5), 99. https://doi.org/10.3390/cli11050099 [Google Scholar]
  43. UNDP (2022). Resilience and Climate Change. Available online: https://www.undp.org/somalia/our-focus/resilience-and-climate-change (accessed on 10 January, 2025). [Google Scholar]
  44. UNEP (2021). Helping farmers beat the climate crisis in Central America’s Dry Corridor. Available online: https://www.unep.org/news-and-stories/story/helping-farmers-beat-climate-crisis-central-americas-dry-corridor (accessed on 10 January, 2025). [Google Scholar]
  45. USAID (2013). Horn of Africa Joint Planning Cell Annual Report. Available online: https://20172020.usaid.gov/sites/default/files/documents/1860/Horn_of_Africa_JPC_Annual_Report_2013_1.pdf (accessed on 10 January, 2025). [Google Scholar]
  46. Waqas, M. M., Shah, S. H. H., Awan, U. K., Waseem, M., Ahmad, I., Fahad, M., ... & Ali, S. (2020). Evaluating the impact of climate change on water productivity of maize in the semi-arid environment of Punjab, Pakistan. Sustainability, 12(9), 3905. https://doi.org/10.3390/su12093905 [Google Scholar]
  47. WFP (2023). Changing Lives – Climate. Retrieved from: https://www.wfp.org/publications/changing-lives-climate (accessed on 10 January, 2025). [Google Scholar]
  48. World Bank (2018). Climate-Smart Agriculture. Available online: https://www.worldbank.org/en/topic/climate-smart-agriculture (accessed on 10 January, 2025). [Google Scholar]
  49. World Bank (2023). World Investing in People for Climate Adaptation and Resilience. Available online: https://blogs.worldbank.org/en/investinpeople/investing-in-people-for-climate-adaptation-and-resilience (accessed on 10 January, 2025). [Google Scholar]
  50. World Vision Australia (2018). Shock proof: Building community resilience to recurrent crises. Available online: https://www.worldvision.com.au/docs/default-source/publications/emergency-and-humanitarian-affairs/8825_multi_resilience_policy_final.pdf (accessed on 10 January, 2025). [Google Scholar]
  51. Xu, D., Liu, Y., Li, T., Wu, P., Chen, Y., & Runa, A. (2018). Pattern of agricultural and pastoral development under water resource constraints in semi-arid areas: A case study of Tongliao, Inner Mongolia. IOP Conference Series: Earth and Environmental Science, 191. https://doi.org/10.1088/1755-1315/191/1/012097 [Google Scholar]
  52. Zhang, J., Hao, X., Hao, H., Fan, X., & Li, Y. (2021). Climate change decreased net ecosystem productivity in the arid region of central Asia. Remote Sensing, 13(21), 4449. https://doi.org/10.3390/rs13214449 [Google Scholar]
  53. Zhang, Z., Guo, H., Chen, B., & Zhang, N. (2002). Economic-Environmental System Planning for Arid Regions in China. Acta Ecologica Sinica, 22, 1018-1027. [Google Scholar]
  54. Zheng, H., Sang, Z., Wang, K., Xu, Y., & Cai, Z. (2022). Distribution of irrigated and rainfed agricultural land in a semi-arid sandy area. Land, 11(10), 1621. https://doi.org/10.3390/land11101621 [Google Scholar]

Similar Articles

1-10 of 64

You may also start an advanced similarity search for this article.