Abstract
Sustainable agriculture is a global imperative to meet the challenges of food security and environmental protection. Plant Growth-Promoting Bacteria (PGPB) have emerged as key players in sustainable agricultural practices due to their diverse roles in enhancing plant growth, nutrient uptake, stress tolerance, and disease resistance. This review explores the diverse facts about PGPB and their potential applications in sustainable agriculture. The review begins by elucidating the mechanisms underlying PGPB-plant interactions, including phytohormone production, nutrient solubilization, and biocontrol activities. This review delves into the intricate signalling networks involved in PGPB-induced systemic resistance. In addition, this review discusses the pivotal role of PGPBs in mitigating abiotic stresses such as drought, salinity, and heavy metal toxicity, highlighting their contributions to climate-resilient agriculture. The ecological implications of PGPB application in sustainable agriculture are discussed, emphasizing the need for responsible and environmentally friendly practices. Furthermore, the use of PGPB for sustainable agriculture holds great promise for addressing the challenges of food security and environmental sustainability. In addition, this review provides a comprehensive overview of the multiple roles, mechanisms of action, and potential applications of PGPB, while emphasizing the importance of responsible and environmentally sound approaches in realizing the full potential of PGPB for a resilient and sustainable agricultural future.
Keywords
References
- Abdelkrim, S., Jebara, S. H., & Jebara, M. (2018). Antioxidant systems responses and the compatible solutes as contributing factors to lead accumulation and tolerance in Lathyrus sativus inoculated by plant growth promoting rhizobacteria. Ecotoxicology and Environmental Safety, 166, 427-436. [Google Scholar]
- Ahmed, E., & Holmstrom, S. J. (2014). Siderophores in environmental research: roles and applications. Microbial Biotechnology, 7(3), 196-208. [Google Scholar]
- Akhtar, M. J., Ullah, S., Ahmad, I., Rauf, A., Nadeem, S. M., Khan, M. Y., & Bulgariu, L. (2018). Nickel phytoextraction through bacterial inoculation in Raphanus sativus. Chemosphere, 190, 234-242. [Google Scholar]
- Ali, A., Guo, D., Li, Y., Shaheen, S. M., Wahid, F., Antoniadis, V., & Zhang, Z. (2021). Streptomyces pactum addition to contaminated mining soils improved soil quality and enhanced metals phytoextraction by wheat in a green remediation trial. Chemosphere, 273, 129692. https://doi.org/10.1016/j.chemosphere.2021.129692 [Google Scholar]
- Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 10, 1068. https://doi.org/10.3389/fpls.2019.01068 [Google Scholar]
- Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13, 1-10. [Google Scholar]
- Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13, 66. https://doi.org/10.1186/1475-2859-13-66 [Google Scholar]
- Bruno, L. B., Anbuganesan, V., Karthik, C., Kumar, A., Banu, J. R., Freitas, H., & Rajkumar, M. (2021). Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus. Journal of Environmental Management, 289, 112553. https://doi.org/10.1016/j.jenvman.2021.112553 [Google Scholar]
- Bruno, L. B., Karthik, C., Ma, Y., Kadirvelu, K., Freitas, H., & Rajkumar, M. (2020). Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere, 244, 125521. https://doi.org/10.1016/j.chemosphere.2019.125521 [Google Scholar]
- Burges, A., Epelde, L., Blanco, F., Becerril, J. M., & Garbisu, C. (2017). Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil. Science of the Total Environment, 584, 329-338. [Google Scholar]
- Chandra, D., Barh, A., & Sharma, I. P. (2018). Plant growth promoting bacteria: a gateway to sustainable agriculture. In Microbial biotechnology in environmental monitoring and cleanup. IGI Global, pp. 318-338. [Google Scholar]
- Chennappa, G., Naik, M. K., Amaresh, Y. S., Nagaraja, H., & Sreenivasa, M. Y. (2017). Azotobacter: a potential biofertilizer and bioinoculants for sustainable agriculture. In Microorganisms for Green Revolution: Volume 1: Microbes for Sustainable Crop Production, pp. 87-106. [Google Scholar]
- Choudhary, D. K., Prakash, A., Wray, V., & Johri, B. N. (2009). Insights of the fluorescent pseudomonads in plant growth regulation. Current Science, 97(2), 170-179. [Google Scholar]
- Chuck, G. S., Tobias, C., Sun, L., Kraemer, F., Li, C., Dibble, D., & Hake, S. (2011). Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proceedings of the National Academy of Sciences, 108(42), 17550-17555. [Google Scholar]
- Finkel, O. M., Castrillo, G., Paredes, S. H., González, I. S., & Dangl, J. L. (2017). Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology, 38, 155-163. [Google Scholar]
- Gupta, S., Bhattacharyya, P., Kulkarni, M. G., & Doležal, K. (2023). Growth regulators and biostimulants: upcoming opportunities. Frontiers in Plant Science, 14, 1209499. https://doi.org/10.3389/fpls.2023.1209499 [Google Scholar]
- Hosseinkhani H, S., Askary, M., Amini, F., & Zahedi, M. (2015). Influence of Air SO2 Pollution on Antioxidant Systems of Alfalfa Inoculated with Rhizobium. Journal of Genetic Resources, 1(1), 7-18. [Google Scholar]
- Huang, R., Cui, X., Luo, X., Mao, P., Zhuang, P., Li, Y., & Li, Z. (2021). Effects of plant growth regulator and chelating agent on the phytoextraction of heavy metals by Pfaffia glomerata and on the soil microbial community. Environmental Pollution, 283, 117159. https://doi.org/10.1016/j.envpol.2021.117159 [Google Scholar]
- Jan, S., & Parray, J. A. (2016). Approaches to heavy metal tolerance in plants. Singapore: Springer. pp. 1-18 [Google Scholar]
- Ke, T., Guo, G., Liu, J., Zhang, C., Tao, Y., Wang, P., & Chen, L. (2021). Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Environmental Pollution, 271, 116314. https://doi.org/10.1016/j.envpol.2020.116314 [Google Scholar]
- Khan, I., Awan, S. A., Rizwan, M., Ali, S., Hassan, M. J., Brestic, M., & Huang, L. (2021). Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicology and Environmental Safety, 222, 112510. https://doi.org/10.1016/j.ecoenv.2021.112510 [Google Scholar]
- Kumar, N., Kumar, A., Shukla, A., Kumar, S., Uthappa, A. R., & Chaturvedi, O. P. (2017). Effect of arbuscular mycorrhiza fungi (AMF) on early seedling growth of some multipurpose tree species. International Journal of Current Microbiology and Applied Sciences, 6(7), 3885-3892. https://doi.org/10.20546/ijcmas.2017.607.400 [Google Scholar]
- Kumar, S., & Saxena, S. (2019). Arbuscular Mycorrhizal Fungi (AMF) from Heavy Metal-Contaminated Soils: Molecular Approach and Application in Phytoremediation. In: Giri, B., Prasad, R., Wu, QS., Varma, A. (eds) Biofertilizers for Sustainable Agriculture and Environment. Soil Biology, Vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_22 [Google Scholar]
- Lastochkina, O., Aliniaeifard, S., Seifikalhor, M., Yuldashev, R., Pusenkova, L., & Garipova, S. (2019). Plant Growth-Promoting Bacteria: Biotic Strategy to Cope with Abiotic Stresses in Wheat. In: Hasanuzzaman, M., Nahar, K., Hossain, M. (eds) Wheat Production in Changing Environments. Springer, Singapore. https://doi.org/10.1007/978-981-13-6883-7_23 [Google Scholar]
- Lee, S. Y., Lee, Y. Y., & Cho, K. S. (2023). Inoculation effect of heavy metal tolerant and plant growth promoting rhizobacteria for rhizoremediation. International Journal of Environmental Science and Technology, 1-16. https://doi.org/10.1007/s13762-023-05078-2 [Google Scholar]
- Ma, Y., Prasad, M. N. V., Rajkumar, M., & Freitas, H. J. B. A. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29(2), 248-258. [Google Scholar]
- Mahdi, I., Fahsi, N., Hafidi, M., Benjelloun, S., Allaoui, A., & Biskri, L. (2021). Rhizospheric phosphate solubilizing Bacillus atrophaeus GQJK17 S8 increases quinoa seedling, withstands heavy metals, and mitigates salt stress. Sustainability, 13(6), 3307. https://doi.org/10.3390/su13063307 [Google Scholar]
- Mishra, J., Prakash, J., & Arora, N. K. (2016). Role of beneficial soil microbes in sustainable agriculture and environmental management. Climate Change and Environmental Sustainability, 4(2), 137-149. [Google Scholar]
- Nazli, F., Mustafa, A., Ahmad, M., Hussain, A., Jamil, M., Wang, X., & El-Esawi, M. A. (2020). A review on practical application and potentials of phytohormone-producing plant growth-promoting rhizobacteria for inducing heavy metal tolerance in crops. Sustainability, 12(21), 9056. https://doi.org/10.3390/su12219056 [Google Scholar]
- Pandey, A., Tripathi, A., Srivastava, P., Choudhary, K. K., & Dikshit, A. (2019). Plant growth-promoting microorganisms in sustainable agriculture. In Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology (pp. 1-19). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-817004-5.00001-4 [Google Scholar]
- Pineda, A., Zheng, S. J., van Loon, J. J., Pieterse, C. M., & Dicke, M. (2010). Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science, 15(9), 507-514. [Google Scholar]
- Rashid, M. H. O., & Chung, Y. R. (2017). Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Frontiers in Plant Science, 8, 1816. https://doi.org/10.3389/fpls.2017.01816 [Google Scholar]
- Scheidegger, A. M., & Sparks, D. L. (1996). A critical assessment of sorption-desorption mechanisms at the soil mineral/water interface. Soil Science, 161(12), 813-831. [Google Scholar]
- Shafi, A., Chauhan, R., Gill, T., Swarnkar, M. K., Sreenivasulu, Y., Kumar, S., ... & Singh, A. K. (2015). Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Molecular Biology, 87, 615-631. [Google Scholar]
- Sharma, L., Priya, M., Kaushal, N., Bhandhari, K., Chaudhary, S., Dhankher, O. P., & Nayyar, H. (2020). Plant growth-regulating molecules as thermoprotectants: functional relevance and prospects for improving heat tolerance in food crops. Journal of Experimental Botany, 71(2), 569-594. [Google Scholar]
- Shi, S., Li, S., Asim, M., Mao, J., Xu, D., Ullah, Z., & Liu, H. (2018). The Arabidopsis calcium-dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. International journal of molecular sciences, 19(7), 1900. https://doi.org/10.3390/ijms19071900 [Google Scholar]
- Singh, G., Biswas, D. R., & Marwaha, T. S. (2010). Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.): a hydroponics study under phytotron growth chamber. Journal of Plant Nutrition, 33(8), 1236-1251. [Google Scholar]
- Singh, K., Sharma, M., & Singh, S. K. (2017). Effect of plant growth regulators on fruit yield and quality of guava (Psidium guajava) cv. Allahabad Safeda. Journal of Pure and Applied Microbiology, 11(2), 1149-1154. [Google Scholar]
- Sivasakthivelan, P., & Saranraj, P. (2013). Azospirillum and its formulations: a review. International Journal of Microbiological Research, 4(3), 275-287. [Google Scholar]
- Smith, F. A., & Smith, S. E. (1997). Tansley review no. 96 structural diversities in (vesicular)–arbuscular mycorrhizal symbioses. The New Phytologist, 137(3), 373-388. [Google Scholar]
- Tanwir, K., Javed, M. T., Abbas, S., Shahid, M., Akram, M. S., Chaudhary, H. J., & Iqbal, M. (2021). Serratia sp. CP-13 alleviates Cd toxicity by morpho-physio-biochemical improvements, antioxidative potential and diminished Cd uptake in Zea mays L. cultivars differing in Cd tolerance. Ecotoxicology and Environmental Safety, 208, 111584. [Google Scholar]
- Ullah, A., Heng, S., Munis, M. F. H., Fahad, S., & Yang, X. (2015). Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environmental and Experimental Botany, 117, 28-40. [Google Scholar]
- Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Nasrulhaq Boyce, A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules, 21(5), 573. https://doi.org/10.3390/molecules21050573 [Google Scholar]
- Vishnupradeep, R., Bruno, L. B., Taj, Z., Karthik, C., Challabathula, D., Kumar, A., & Rajkumar, M. (2022). Plant growth promoting bacteria improve growth and phytostabilization potential of Zea mays under chromium and drought stress by altering photosynthetic and antioxidant responses. Environmental Technology & Innovation, 25, 102154. [Google Scholar]
- Wani, P. A., Rafi, N., Wani, U., Bilikis A, H., & Khan, M. S. A. (2023). Simultaneous bioremediation of heavy metals and biodegradation of hydrocarbons by metal resistant Brevibacillus parabrevis OZF5 improves plant growth promotion. Bioremediation Journal, 27(1), 20-31. [Google Scholar]
- Yadav, A., Singh, D., Lingwan, M., Yadukrishnan, P., Masakapalli, S. K., & Datta, S. (2020). Light signalling and UV‐B‐mediated plant growth regulation. Journal of Integrative Plant Biology, 62(9), 1270-1292. [Google Scholar]
- Zhang, H., Sun, X., & Dai, M. (2022). Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. Plant Communications, 3, 100228. https://doi.org/10.1016/j.xplc.2021.100228 [Google Scholar]

