Abstract
This study evaluated the efficacy of biopesticides against major insect pests of cucumber (Cucumis sativus L.) in Lekbeshi, Surkhet, Nepal. A randomized complete block design experiment was conducted with four treatments: Beauveria bassiana (1 ml/L), Bacillus thuringiensis (Bt) (2 ml/L), Jholmol (1:5 concentration), and an untreated control. After the third spray, B. bassiana reduced red pumpkin beetle populations from 1.4 to 0.4 insects per plant, while Bt reduced fruit fly populations from 2.8 to 1.6 insects per plant, compared to the control (4.2 to 2.2). At 60 days after transplanting, Bt-treated plants were significantly taller (137.45 cm) than control plants (111.28 cm). Fruit damage was lowest in Bt-treated plots (1.8% and 0.69 kg damage weight) compared to the control (3.8% and 0.69 kg). While yield attributes showed no significant differences, total yield was highest in B. bassiana-treated plots (35.58 t/ha) compared to the control (17.8 t/ha). Economic analysis revealed that B. bassiana treatment had the highest benefit-cost ratio (4.19), followed by Bt (2.9), control (2.8), and Jholmol (2.3). These findings suggest that biopesticides, particularly B. bassiana and Bt, can effectively manage major cucumber pests while improving yield and economic returns, offering a sustainable alternative to chemical pesticides in subtropical regions.
Keywords
References
- Abrol, D. P., & Shankar, U. (2014). Pesticides, Food Safety and Integrated Pest Management. In Integrated Pest Management (pp. 167–199). Springer Netherlands. https://doi.org/10.1007/978-94-007-7796-5_7 [Google Scholar]
- Acharya, N., Seliga, R. A., Rajotte, E. G., Jenkins, N. E., & Thomas, M. B. (2015). Persistence and efficacy of a Beauveria bassiana biopesticide against the house fly, Musca domestica, on typical structural substrates of poultry houses. Biocontrol Science and Technology, 25(6), 697–715. https://doi.org/10.1080/09583157.2015.1009872 [Google Scholar]
- Adhikari, J. (2017). Organic farming and its prospects in peri-urban area of Pokhara, Nepal. Journal of Forest and Livelihood, 15(2), 19. [Google Scholar]
- Agrawal, N. K., Marechal, J., Leikanger, I., Choudhury, D., Maden, U., Sellmyer, A., Bhatta, L. D., & Datta, K. (2016). Preparation of Jholmal in RMV Pilot Sites: Upscaling a local practice. pp. 1–4. [Google Scholar]
- Archana, H. R., Darshan, K., Lakshmi, M. A., Ghoshal, T., Bashayal, B. M., & Aggarwal, R. (2022). Biopesticides: A key player in agro-environmental sustainability. In Trends of Applied Microbiology for Sustainable Economy (pp. 613–653). Elsevier. [Google Scholar]
- Azad, A. K., Sardar, A., Yesmin, N., Rahman, M., & Islam, S. (2013). Eco-Friendly Pest Control in Cucumber (Cucumis sativa L.) Field with Botanical Pesticides. Natural Resources, 4(05), 404–409. https://doi.org/10.4236/nr.2013.45050 [Google Scholar]
- Bahadur, A. (2023). The potential of the entomopathogenic fungus Beauveria bassiana to manage insect pests and diseases. Natural Resources Conservation and Research, 6(2), 2543. https://doi.org/10.24294/nrcr.v6i2.2543 [Google Scholar]
- Bartaula, S., Adhikari, A., Panthi, U., Karki, P., & Timalsena, K. (2019). Genetic variability, heritability and genetic advance in cucumber (Cucumis sativus L.). Journal of Agriculture and Natural Resources, 2(1), 215–222. https://doi.org/10.3126/janr.v2i1.26074 [Google Scholar]
- Becker, N., Zgomba, M., Ludwig, M., Petric, D., & Rettich, F. (1992). Factors influencing the activity of Bacillus thuringiensis var. israelensis treatments. Journal of the American Mosquito Control Association, 8(3), 285–289. [Google Scholar]
- Bhusal, K., & Udas, E. (2020). A nature-based solution for mountain farming systems. February. [Google Scholar]
- Bravo, A., Gill, S. S., & Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49(4), 423–435. https://doi.org/10.1016/j.toxicon.2006.11.022 [Google Scholar]
- Chandi, R. S., Kaur, A., & Aggarwal, N. (2022). Management of red pumpkin beetle, Aulacophora foveicollis (Lucas) with traditional method of dusting with dung ash in cucurbits. Indian Journal of Traditional Knowledge, 21(1), 208–214. https://doi.org/10.56042/ijtk.v21i1.34310 [Google Scholar]
- Chandrakasan, G., Ayala, M. T., García Trejo, J. F., Marcus, G., Maruthupandy, M., Kanisha, C. C., Murugan, M., AL-mekhlafi, F. A., & Wadaan, M. A. (2022). Bio controlled efficacy of Bacillus thuringiensis cry protein protection against tomato fruit borer Helicoverpa armigera in a laboratory environment. Physiological and Molecular Plant Pathology, 119, 101827. https://doi.org/10.1016/j.pmpp.2022.101827 [Google Scholar]
- Dara, S. K. (2017). Insect resistance to biopesticides. UCANR E-Journal of Entomology and Biologicals. Available online https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=25819 (accessed on 10 June 2024). [Google Scholar]
- Dara, S. K. (2024). Entomopathogenic fungi-based biopesticides contribute to more than pest management. UCANR E-Journal of Entomology and Biologicals. Available online https://ucanr.edu/blogs/strawberries-vegetables/index.cfm?start=2 (accessed on 10 June 2024). [Google Scholar]
- Dhakal, R., Ghimire, R., Sapkota, M., Thapa, S., Bhatta, A. K., & Regmi, R. (2019). Bioefficacy of different insecticides on cowpea aphid (Aphis craccivora Koch). International Journal of Entomological Research, 7(1), 01–07. https://doi.org/10.33687/entomol.007.01.2629 [Google Scholar]
- Dhillon, M. K., Singh, R., Naresh, J. S., & Sharma, H. C. (2005). The melon fruit fly, Bactrocera cucurbitae: A review of its biology and management. Journal of Insect Science, 5(1), 1-10. https://doi.org/10.1093/jis/5.1.40 [Google Scholar]
- Dhopte, A. M. (2020). Sustainable dryland farming. Scientific Publishers. "Granthlok" 4806/24, Ansari Road, Bharat Ram Road, Darya Ganj New Delhi 110002 India. [Google Scholar]
- Ene, C. O., Ogbonna, P. E., Agbo, C. U., & Chukwudi, U. P. (2016). Studies of phenotypic and genotypic variation in sixteen cucumber genotypes. Chilean Journal of Agricultural Research, 76(3), 307–313. https://doi.org/10.4067/S0718-58392016000300007 [Google Scholar]
- Fenibo, E. O., Ijoma, G. N., & Matambo, T. (2022). Biopesticides in Sustainable Agriculture: Current Status and Future Prospects. In New and Future Development in Biopesticide Research: Biotechnological Exploration (pp. 1–53). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-3989-0_1 [Google Scholar]
- Glare, T. R., & Nollet, L. M. L. (2015). Types of biopesticides. In Biopesticides handbook (pp. 7–24). CRC Press. [Google Scholar]
- Gomis‐Cebolla, J., & Berry, C. (2023). Bacillus thuringiensis as a biofertilizer in crops and their implications in the control of phytopathogens and insect pests. Pest Management Science, 79(9), 2992–3001. https://doi.org/10.1002/ps.7560 [Google Scholar]
- Green, K. K., Stenberg, J. A., & Lankinen, Å. (2020). Making sense of Integrated Pest Management (IPM) in the light of evolution. Evolutionary Applications, 13(8), 1791–1805. https://doi.org/10.1111/eva.13067 [Google Scholar]
- Gurung, T. R., & Azad, A. K. (2013). Extent and potential use of bio-pesticides for crop protection in SAARC Countries. SAARC Agriculture Centre. Bangladesh Agricultural Research Council Complex, Farmgate, Dhaka, Bangladesh. [Google Scholar]
- Hassain, M. D. S. (2013). Host Preference of Red Pumpkin Beetle (Aulacophora foveicollis, Lucas) on different cucurbits. Department of Entomology, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh. [Google Scholar]
- HGIC. (2021). Cucumber , Squash , Melon & Other Cucurbit Insect Pests. pp. 19. [Google Scholar]
- Homayoonzadeh, M., Esmaeily, M., Talebi, KhalilAllahyari, H., Reitz, S., & Michaud, J. P. (2022). Inoculation of cucumber plants with Beauveria bassiana enhances resistance to Aphis gossypii (Hemiptera: Aphididae) and increases aphid susceptibility to pirimicarb. European Journal of Entomology, 119, 1–11. https://doi.org/10.14411/eje.2022.001 [Google Scholar]
- Hossain, M., Yeasmin, F., Rahman, M., Akhtar, S., & Hasnat, M. (2018). Role of insect visits on cucumber (Cucumis sativus L.) yield. Journal of Biodiversity Conservation and Bioresource Management, 4(2), 81–88. https://doi.org/10.3329/jbcbm.v4i2.39854 [Google Scholar]
- Iida, Y., Higashi, Y., Nishi, O., Kouda, M., Maeda, K., Yoshida, K., Asano, S., Kawakami, T., Nakajima, K., Kuroda, K., Tanaka, C., Sasaki, A., Kamiya, K., Yamagishi, N., Fujinaga, M., Terami, F., Yamanaka, S., & Kubota, M. (2023). Entomopathogenic fungus Beauveria bassiana–based bioinsecticide suppresses severity of powdery mildews of vegetables by inducing the plant defense responses. Frontiers in Plant Science, 14, 1-13. https://doi.org/10.3389/fpls.2023.1211825 [Google Scholar]
- Inglis, G. D., Duke, G. M., Kanagaratnam, P., Johnson, D. L., & Goettel, M. S. (1997). Persistence of Beauveria bassiana in soil following application of conidia through crop canopies. Memoirs of the Entomological Society of Canada, 129(S171), 253–263. https://doi.org/10.4039/entm129171253-1 [Google Scholar]
- Islam, M. D. J. (2015). Host preference of red pumpkin beetle, Aulacophora foveicollis lucas in different cucurbits. Department of entomology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh. [Google Scholar]
- Jia, H., & Wang, H. (2021). Introductory Chapter: Studies on Cucumber. In Cucumber Economic Values and Its Cultivation and Breeding. IntechOpen. https://doi.org/10.5772/intechopen.97360 [Google Scholar]
- Jouzani, G. S., Valijanian, E., & Sharafi, R. (2017). Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Applied Microbiology and Biotechnology, 101(7), 2691–2711. https://doi.org/10.1007/s00253-017-8175-y [Google Scholar]
- Keswani, C., Singh, S. P., & Singh, H. B. (2013). Beauveria bassiana: Status, Mode of action, Applications and Safety issues. Biotech Today, 3(1), 1-16. https://doi.org/10.5958/j.2322-0996.3.1.002 [Google Scholar]
- Khanal, R., & Dhakal, S. C. (2020). Value chain analysis of cucumber in Arghakhanchi, Nepal. Journal of Agriculture and Forestry University, 4(1), 295–302. https://doi.org/10.3126/jafu.v4i1.47102 [Google Scholar]
- Kumar, P., Kamle, M., Borah, R., Mahato, D. K., & Sharma, B. (2021). Bacillus thuringiensis as microbial biopesticide: uses and application for sustainable agriculture. Egyptian Journal of Biological Pest Control, 31(1), 95. https://doi.org/10.1186/s41938-021-00440-3 [Google Scholar]
- Maligimani, P. (2024). Bioefficacy and residues of imidacloprid and spiromesifen in/on cucumber (Cucumis sativus L.). The Pharma Innovation Journal, 12(12), 1446-1451. [Google Scholar]
- Mallick, P. K. (2022). Evaluating Potential Importance of Cucumber (Cucumis sativus L. -Cucurbitaceae): A Brief Review. International Journal of Applied Sciences and Biotechnology, 10(1), 12–15. https://doi.org/10.3126/ijasbt.v10i1.44152 [Google Scholar]
- Miah, M. R. (2018). Damage Potentiality and Eco-Friendly Management of Red Pumpkin Beetle and Cucurbit Fruit Fly on Squash Vegetable. Department of Entomology, Sher-E-Bangla Agricultural University, Dhaka-1207, Bangladesh. [Google Scholar]
- MoALD. (2023). Statistical Infromation on Nepalese Agriculture 2078/79. Government of Nepal, Ministry of Agricultural Development, Agribusiness Promotion and Statistics Division, Agri Statistics Section: Kathmandu, Nepal. [Google Scholar]
- Palma, L., Muñoz, D., Berry, C., Murillo, J., & Caballero, P. (2014). Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity. Toxins, 6(12), 3296–3325. https://doi.org/10.3390/toxins6123296 [Google Scholar]
- Papadopoulos, N. T., De Meyer, M., Terblanche, J. S., & Kriticos, D. J. (2024). Fruit Flies: Challenges and Opportunities to Stem the Tide of Global Invasions. Annual Review of Entomology, 69, 355–373. https://doi.org/10.1146/annurev-ento-022723-103200 [Google Scholar]
- Patel, D. R., Patel, R. M., Patel, P. H., & Dabhi, M. V. (2021). Evaluation of Different Botanicals against Red Pumpkin Beetle, Aulacophora foveicollis Lucas Infesting Cucumber. International Journal of Current Microbiology and Applied Sciences, 10(2), 3133–3140. https://doi.org/10.20546/ijcmas.2021.1002.343 [Google Scholar]
- Pedrini, N. (2022). The Entomopathogenic Fungus Beauveria bassiana Shows Its Toxic Side within Insects: Expression of Genes Encoding Secondary Metabolites during Pathogenesis. Journal of Fungi, 8(5), 488. https://doi.org/10.3390/jof8050488 [Google Scholar]
- Prabha, S., Yadav, A., Kumar, A., Yadav, A., Yadav, H. K., Kumar, S., Yadav, R. S., & Kumar, R. (2016). Biopesticides - An alternative and eco-friendly source for the control of pests in agricultural crops. Plant Archives, 16(2), 902–906. [Google Scholar]
- Radames, T. V., Sánchez Acosta, L., Fortis Hernández, M., Preciado Rangel, P., Gallegos Robles, M. Á., Antonio Cruz, R. del C., & Vázquez Vázquez, C. (2018). Effect of Seaweed Aqueous Extracts and Compost on Vegetative Growth, Yield, and Nutraceutical Quality of Cucumber (Cucumis sativus L.) Fruit. Agronomy, 8(11), 264. https://doi.org/10.3390/agronomy8110264 [Google Scholar]
- Rani, A. T., Kammar, V., Keerthi, M. C., Rani, V., Majumder, S., Pandey, K. K., & Singh, J. (2021). Biopesticides: An Alternative to Synthetic Insecticides. In Microbial Technology for Sustainable Environment (pp. 439–466). Springer Singapore. https://doi.org/10.1007/978-981-16-3840-4_23 [Google Scholar]
- Ratnadass, A., Fernandes, P., Avelino, J., & Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agronomy for Sustainable Development, 32(1), 273–303. https://doi.org/10.1007/s13593-011-0022-4 [Google Scholar]
- Redmond, C. T., Wallis, L., Geis, M., Williamson, R. C., & Potter, D. A. (2020). Strengths and limitations of Bacillus thuringiensis galleriae for managing Japanese beetle (Popillia japonica) adults and grubs with caveats for cross‐order activity to monarch butterfly (Danaus plexippus) larvae. Pest Management Science, 76(2), 472–479. https://doi.org/10.1002/ps.5532 [Google Scholar]
- Rogers, M. A. (2012). Efficacy of biopesticides for organic management of cucumber beetles. Doctoral dissertation at the University of Tennessee. Available online: https://trace.tennessee.edu/utk_graddiss/1556 (accessed on 10 June 2024). [Google Scholar]
- Roh, J. Y., Choi, J. Y., Li, M. S., Jin, B. R., & Je, Y. H. (2007). Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. Journal of Microbiology and Biotechnology, 17(4), 547–559. [Google Scholar]
- Sampiano, K. F. (2022). Plant Diversification with Biopesticide Application in the Production of Cucumber (Cucumis sativus Linn.) under Carmen, Davao del Norte Conditions. Journal of Multidisciplinary Studies, 11(1). https://doi.org/10.62249/jmds.2013.2419 [Google Scholar]
- Sapkota, R., Dahal, K. C., & Thapa, R. B. (2010). Damage assessment and management of cucurbit fruit flies in spring-summer squash. Journal of Entomology and Nematology, 2(1), 7–012. [Google Scholar]
- Sayed, A. M. M., & Behle, R. W. (2017). Evaluating a dual microbial agent biopesticide with Bacillus thuringiensis var. kurstaki and Beauveria bassiana blastospores. Biocontrol Science and Technology, 27(4), 461–474. https://doi.org/10.1080/09583157.2017.1303662 [Google Scholar]
- Sharma, A., Rana, C., & Shiwani, K. (2016). 19 Important Insect Pests of Cucurbits and Their Management. In book: Handbook of Cucurbits: Growth, Cultural Practices and Physiology, CRC Press. [Google Scholar]
- Skinner, M., Parker, B. L., & Kim, J. S. (2014). Role of Entomopathogenic Fungi in Integrated Pest Management. In Integrated Pest Management (pp. 169–191). Elsevier. https://doi.org/10.1016/B978-0-12-398529-3.00011-7 [Google Scholar]
- Sorathiya, K., Sorathiya, K., Kalariya, S., & Patel, L. (2023). Development and Evaluation of a Liquid Formulation of Trichoderma viride as a Bio-Pesticide for Pest Management. International Journal of Applied Sciences and Biotechnology, 11(2), 60–65. https://doi.org/10.3126/ijasbt.v11i2.56119 [Google Scholar]
- Srivastava, R. M., & Joshih, S. (2021). Integrated pest management for cucurbits in cucumber (Cucumis sativus L.). Cucumber Economic Values and Its Cultivation and Breeding, 1(5), 1–10. [Google Scholar]
- Subedi, S., Bhandari, N., Basnet, M., Pradhan, N. G., & Gautam, I. P. (2024). Evaluation of cucumber genotypes under plastic house and open field conditions in Lalitpur, Nepal. Cogent Food & Agriculture, 10(1). https://doi.org/10.1080/23311932.2023.2298531 [Google Scholar]
- Tetreau, G., Andreeva, E., Banneville, A.-S., De Zitter, E., & Colletier, J.-P. (2021). How Does Bacillus thuringiensis Crystallize Such a Large Diversity of Toxins? Toxins, 13(7), 443. https://doi.org/10.3390/toxins13070443 [Google Scholar]
- Thapa, R., Nainabasti, A., Lamsal, A., Malla, S., Thapa, B., Subedi, Y., & Ghimire, S. (2022). Pesticide Persistence in Agriculture and its hazardous effects on Environmental Components. International Journal of Applied Sciences and Biotechnology, 10(2), 75–83. https://doi.org/10.3126/ijasbt.v10i2.45095 [Google Scholar]
- Toledo, J., Liedo, P., Flores, S., Campos, S. E., Villaseñor, A., & Montoya, P. (2007). Use of Beauveria bassiana and Metarhizium anisopliae for fruit fly control: a novel approach. Proceedings of the 7th International Symposium on Fruit Flies of Economic Importance, 2, 127–132. [Google Scholar]
- Tomar, P., Thakur, P., Singh, S., Shreaz, S., Rustagi, S., Kumar Rai, P., Yadav, A., & Yadav, A. N. (2024). Biological control of tephritid fruit flies Bactrocera spp. in Himachal Pradesh, India. Plant Science Today, 11(3), 314-319. https://doi.org/10.14719/pst.3215 [Google Scholar]
- Wang, H., Peng, H., Li, W., Cheng, P., & Gong, M. (2021). The Toxins of Beauveria bassiana and the Strategies to Improve Their Virulence to Insects. Frontiers in Microbiology, 12, 1-10. https://doi.org/10.3389/fmicb.2021.705343 [Google Scholar]
- Wei, Q.-Y., Li, Y.-Y., Xu, C., Wu, Y.-X., Zhang, Y.-R., & Liu, H. (2020). Endophytic colonization by Beauveria bassiana increases the resistance of tomatoes against Bemisia tabaci. Arthropod-Plant Interactions, 14(3), 289–300. https://doi.org/10.1007/s11829-020-09746-9 [Google Scholar]

