Effect of Rhizobium leguminosarum Inoculation and Mulching on Growth and Yield of Chinese Long Bean (Vigna unguiculata subsp. sesquipedalis)

Open Access
Download PDF
AgroEnvironmental Sustainability
Saksham Shrestha , Pankaj Kumar Yadav , Babu Ram Khanal , Prabina Bhujel , Apeksha Neupane , Bishal Chaudhary , Dipesh Giri

Abstract

An experiment was conducted to evaluate the influence of Rhizobium leguminosarum inoculation and mulching on the growth and yield of Chinese long bean (Vigna unguiculata subsp. sesquipedalis) in Palungtar, Nepal. A split-plot design was used for the experiment, which was replicated four times. Plastic, straw, and no-mulch conditions constituted the main plot factor, while seeds with or without Rhizobium inoculation constituted the sub-plot elements. Growth parameters and yield-related traits of Chinese long beans were recorded at 15-day intervals. Transparent plastic mulching resulted in earlier flowering (46 days), while seed inoculation with Rhizobium resulted in a higher mean number of nodules (106.92) than non-inoculated treatments, with transparent plastic mulching resulting in the highest mean number of nodules (108.21). At 60 days after showing (DAS), plant height was greater in the inoculated treatment (69.23 cm), while at 30 DAS, the non-inoculated treatment had a higher number of leaves (22.28 cm). Similarly, pod length (49.98 cm), pod yield per plant (348.01 g), and total yield per hectare (16.07 t/ha) were all significantly higher with both plastic mulch and seed inoculation with Rhizobium than with the other treatments alone. A positive correlation was observed between plant height (0.81), number of branches (0.44), number of leaves (0.81), number of nodules per plant (0.6), and pod yield. This supports the potential benefits of using seed inoculation with Rhizobium in combination with mulching to improve Chinese long bean growth and increase yield as demonstrated by the results of this study.

Keywords

Chinese long bean nitrogen fertilizer Rhizobium leguminosarum transparent plastic mulch

References

  1. Abera, T., & Abebe, Z. (2014). Effect of fertilizer rate, Rhizobium inoculation, and lime rate on seed yield of Faba bean at Horro and Gedo highlands. Journal of Agricultural Research, 2, 61-68. [Google Scholar]
  2. Bambara, S., & Ndakidemi, P. A. (2010). Phaseolus vulgaris response to Rhizobium inoculation, lime, and molybdenum in selected low pH soil in Western Cape, South Africa. African Journal of Agricultural Research, 5(14), 1804–1811. https://doi.org/10.5897/AJAR09.584 [Google Scholar]
  3. Bhadauria, H. S., & Kumar, V. (2006). Effect of Mulching on growth and productivity of Okra Moench under saline irrigation conditions. American Journal of Plant Physiology, 1(2), 214-216. https://doi.org/10.3923/ajpp.2006.214.216 [Google Scholar]
  4. Chalker-Scott, L. (2007). Impact of mulches on landscape plants and the environment - a review. Journal of Environmental Horticulture, 25, 239–249. [Google Scholar]
  5. Chaoudhary, S. K., Choudhary, G. L., & Prajapat, K. (2013). Response of cowpea (Vigna unguiculata (L.) Walp.) to fertility levels and mulching. Environment and Ecology, 31(2), 492-495. [Google Scholar]
  6. Darini, M. T., & Astuti, A. (2023). Correlation between Root Nodule Characteristic and Growth Component of Jack Bean Intercropped with Aloe Plant in Calcareous Soil. International Journal on Advanced Science, Engineering & Information Technology, 13(2), 625-631. https://doi.org/10.18517/ijaseit.13.2.10922 [Google Scholar]
  7. Dhakal, R., Sitaula, H. P., Acharya, B., Bhusal, S., & Dhakal, S. (2019). Effect of different fertilizers in yield and nodulation of cowpea (Vigna unguiculata) under mulched and un-mulched field conditions in Chitwan district, Nepal. Big Data in Agriculture, 1(2), 18-22. https://doi.org/10.26480/bda.02.2019.18.22 [Google Scholar]
  8. Dukare, A., Kale, S., Kannaujia, P., Indore, N., Kumar Mahawar, M., Singh, R. K., & Gupta, R. K. (2017). Root development and nodulation in cowpea as affected by application of organic and different types of inorganic/plastic mulches. International Journal of Current Microbiology and Applied Sciences, 6(11), 1728-1738. https://doi.org/10.20546/ijcmas.2017.611.209 [Google Scholar]
  9. Erenstein, O. (2002). Crop residue mulching in tropical and semi-tropical countries: An evaluation of residue availability and other technological implications. Soil and Tillage Research, 67(2), 115–133. https://doi.org/10.1016/S0167-1987(02)00062-4 [Google Scholar]
  10. FAOSTAT. (2019). Crops and livestock products. Food and Agriculture Organization Statistics, Food and Agriculture Organization (FAO). Available online: https://www.fao.org/faostat/en/#data/QCL (accessed 10 September 2023). [Google Scholar]
  11. Figueiredo, M. V. B., Burity, H. A., Martínez, C. R., & Chanway, C. P. (2008). Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Applied Soil Ecology, 40(1), 182–188. https://doi.org/10.1016/j.apsoil.2008.04.005 [Google Scholar]
  12. Fujita, H., Aoki, S., & Kawaguchi, M. (2014). Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis. PLoS ONE, 9(4), 93670. https://doi.org/10.1371/journal.pone.0093670 [Google Scholar]
  13. Gajghate, R., Chourasiya, D., Harikrishna, & Sharma, R. K. (2020). Plant morphological, physiological traits associated with adaptation against heat stress in wheat and maize. In: Giri, B., Sharma, M.P. (eds) Plant Stress Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9380-2_3 [Google Scholar]
  14. Huque, A. M., Hossain M. K., Alam N., Hasanuzzaman M., & Biswas B. K. (2012). Genetic divergence in yard long bean (Vigna unguiculata (L.) Walp. ssp. sesquipedalis Verdc.). Bangladesh Journal of Botany, 41(1), 61-69. http://doi.org/10.3329/bjb.v41i1.11084 [Google Scholar]
  15. Iqbal, R., Raza, M. A. S., Valipour, M., Saleem, M. F., Zaheer, M. S., Ahmad, S., Toleikiene, M., Haider, I., Aslam, M. U., & Nazar, M. A. (2020). Potential agricultural and environmental benefits of mulches—a review. Bulletin of the National Research Centre, 44, 75. https://doi.org/10.1186/s42269-020-00290-3 [Google Scholar]
  16. Karasu, A., Oz, M., & Dogan, R. (2011). The effect of bacterial inoculation and different nitrogen doses on yield and yield components of some dwarf dry bean cultivars (Phaseolus vulgaris L.). Bulgarian Journal of Agricultural Science, 17, 296-305. [Google Scholar]
  17. Kasperbauer, M. J. (2000). Strawberry yield over red versus black plastic mulch. Crop Science, 40(1), 171-174. https://doi.org/10.2135/cropsci2000.401171x [Google Scholar]
  18. Kawocharr, M. A., S. A., Sayem, M., & Mahfuz, M. (2010). Effect of mulching on growth yield of French bean. Bangladesh Journal of Environment Science, 19, 63-66. [Google Scholar]
  19. Kebede, E. (2021). Competency of Rhizobial inoculation in sustainable agricultural production and biocontrol of plant diseases. Frontiers in Sustainable Food Systems, 5, 1–22. https://doi.org/10.3389/fsufs.2021.728014 [Google Scholar]
  20. Kumar, S., Diksha, Sindhu, S. S., & Kumar, R. (2022). Biofertilizers: An eco-friendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3, 100094. https://doi.org/10.1016/j.crmicr.2021.100094 [Google Scholar]
  21. Lalitha, M., Thilagam, V. K., Balakrishnan, N., & Mansour, M. (2010). Effect of plastic mulch on soil properties and crop growth review. Agricultural Reviews, 31(2), 145-149. [Google Scholar]
  22. Lamont Jr, W. J. (2017). Plastic mulches for the production of vegetable crops. In A guide to the manufacture, performance, and potential of plastics in agriculture. Elsevier, pp. 45-60. [Google Scholar]
  23. Lindström, K., & Mousavi, S. A. (2020). Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology, 13(5), 1314-1335. [Google Scholar]
  24. Manjesh, M., Adivappar, N., Srinivasa, V., & Girijesh, G. K. (2019). Effect of plant densities and different environments on productivity and profitability of yard long bean (Vigna unguiculata sub sp. sesquipedalis). Legume Research: An International Journal, 42(3), 348-352. [Google Scholar]
  25. Meschede, D. K., Ferreira, A. B., Ribeiro, J., & C., C. (2007). Evaluation of weed suppression using different crop covers under Brazilian cerrado soil conditions (Avaliação de diferentescoberturas na supressão de plantas daninhas no cerrado). Planta Daninha, 25(3), 465 [Google Scholar]
  26. MoALD (2020). Ministry of Agriculture and Livestock Development. Singhadurbar, Kathmandu, Government of Nepal. Available online: https://www.moald.gov.np/publication/AgricultureStatistics (accessed 10 September 2023). [Google Scholar]
  27. Mundhe, S. G., Sonawane, D. A., & Suryavanshi, P. B. (2019). The significance of mulches on growth, yield, and quality of Summer Sesamum (Sesamum indicum L.) about weather parameters. International Journal of Current Microbiology and Applied Sciences, 8(10), 462–472. https://doi.org/10.20546/ijcmas.2019.810.050 [Google Scholar]
  28. NASA Power (2021). NASA Power. Available online: https://power.larc.nasa.gov/data-access-viewer (accessed 10 September 2023). [Google Scholar]
  29. Ndlovu, T. J. (2015). Effect of Rhizobium phaseoli inoculation and phosphorus application on nodulation, growth, and yield components of two dry bean (Phaseolus vulgaris) cultivars. M.Sc. Thesis in Agriculture (Agronomy), University of Limpopo, Limpopo, South Africa. [Google Scholar]
  30. Nooprom, K., & Santipracha, Q. (2015). Effect of varieties on growth and yield of yard long bean under Songhkla conditions, Southern Thailand. Modern Applied Science, 9(13), 247. https://doi.org/10.5539/mas.v9n13p247 [Google Scholar]
  31. Rashid, M. I., Mujawar, L. H., Shahzad, T., Almeelbi, T., Ismail, I. M. I., & Oves, M. (2016). Bacteria and fungi can contribute to nutrient bioavailability and aggregate formation in degraded soils. Microbiological Research, 183, 26–41. https://doi.org/10.1016/j.micres.2015.11.007 [Google Scholar]
  32. Ravikumar, R. (2012). Growth effects of Rhizobium Inoculation in some legume plants. International Journal of Current Science, 1, 1-6. [Google Scholar]
  33. Raza, W., Javed Akhtar, M., Arshad, M., Yousaf, S., Akhtar, M. J., Arshad, M., & Yousaf, S. (2004). Growth, nodulation, and yield of Mungbean (Vigna Radiata L.) as influenced by coinoculation with rhizobium and plant growth promoting Rhizobacteria. Journal Agriculture Scencei, 41(4), 125–130. [Google Scholar]
  34. Rubatzky, V. E., & Yamaguchi, M. (2012). World vegetables: principles, production, and nutritive values. Edition 2, pp. 843, Springer Science & Business Media Dordrecht. https://doi.org/10.1007/978-1-4615-6015-9 [Google Scholar]
  35. Sajid, M., Rab, A., Noor, S., Shah, M., Jan, I., & Khan, M. A. (2011). Influence of Rhizobium inoculation on growth and yield of groundnut cultivars. Sarhad Journal Agriculture, 27(4), 573–576. [Google Scholar]
  36. Sapkota, A., Poudel, S., Subedi, U., Shrivastav, R., Jaya Gairhe, J., Khanal, S., & Pande, K. R. (2015). Effect of mulching and different doses of phosphorous in cowpea (Vigna unguiculata L.) yield and residual soil chemical properties at Bhairahawa, Nepal. World Journal of Agricultural Research, 3(5), 163-173. [Google Scholar]
  37. Sarutayophat, T., Nualsri, C., Santipracha, Q., & Saereeprasert, V. (2007). Characterization and genetic relatedness among 37-yardlong bean and cowpea accessions based on morphological characters and RAPD analysis. Songklanakarin Journal of Science and Technology, 29(3), 591–600. [Google Scholar]
  38. Shahid, M. Q., Saleem, M. F., Khan, H. Z., & Anjum, S. A. (2009). Performance of soybean (Glycine max L.) under different phosphorous levels and inoculation. Pakistan Journal of Agricultural Sciences, 46, 237-241. [Google Scholar]
  39. Siczek, A., & Lipiec, J. (2009). Soybean nodulation and symbiotic nitrogen fixation in response to soil compaction and mulching. Assembly, 11, 149635. [Google Scholar]
  40. Steinberga V., A. I. (2008). The evaluation of the effectiveness of Rhizobium lupini strains. AGRONOMIJAS VĒSTIS - Latvian Journal of Agronomy, 10, 193-197. [Google Scholar]
  41. Wang, Z. H., Li, S. X., & Malhi, S. (2008). Effects of fertilization and other agronomic measures on nutritional quality of crops. Journal of the Science of Food and Agriculture, 88(1), 7-23. [Google Scholar]
  42. Younis, M. A., Gul, R., Adil, M., Sajid, M., Riaz, A., & Ali, S. (2019). Effect of rhizobium inoculation on morphological and yield contributing traits in chickpea (Cicer arietinum L.). Pure and Applied Biology, 8(1), 700168. [Google Scholar]
  43. Zaman, S., Mazid, M. A., & Kabir, G. (2011). Effect of Rhizobium inoculation on nodulation, yield, and yield traits of chickpea (Cicer arietinum L.) in four different soils of greater Rajshahi. Journal of Life and Earth Science, 6, 45-50. https://doi.org/10.3329/jles.v6i0.9720 [Google Scholar]
  44. Zhu, X. G., Long, S. P., & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61, 235-261. [Google Scholar]
  45. Ziech, A. R. D., Conceição, P. C., Luchese, A. V., Paulus, D., & Ziech, M. F. (2014). Cultivation of lettuce under different management of land cover and nutrient sources. Revista Brasileira de Engenharia Agricola e Ambiental, 18(9), 948–954. https://doi.org/10.1590/1807-1929/agriambi.v18n09p948-954 [Google Scholar]

Similar Articles

1-10 of 17

You may also start an advanced similarity search for this article.