Abstract
Nitrogen (N), as a primary nutrient requirement of maize (Zea mays L.), plays a critical role in its development and productivity. Proper nitrogen management practices involve a delicate balance between providing an adequate amount of this nutrient and mitigating potential environmental impacts. When implemented effectively, these practices can significantly improve corn production. An adequate nitrogen supply promotes vigorous vegetative growth, contributing to strong stalks and an abundance of leaves, which are essential for maximizing the plant's photosynthetic capacity. This lush foliage, in turn, leads to increased photosynthesis and carbohydrate production, providing the energy maize needs throughout the reproductive stage to develop and fill its kernels. In addition, nitrogen is closely linked to kernel development. Well-timed and dosed nitrogen applications can result in larger, well-filled ears with plump kernels, ultimately increasing both the quantity and quality of the maize yield. Environmental considerations, such as reducing nitrogen runoff and greenhouse gas emissions, are important for maintaining ecosystems and mitigating climate change. Thus, this review article highlights the need for a holistic approach to nitrogen management, combining innovative techniques with sustainable agricultural practices, to ensure food security and environmental conservation in maize production systems.
Keywords
References
- Adhikari, K., Bhandari, S., Aryal, K., Mahato, M., & Shrestha, J. (2021). Effect of different levels of nitrogen on growth and yield of hybrid maize (Zea mays L.) varieties. Journal of Agriculture and Natural Resources, 4(2), 48–62. https://doi.org/10.3126/janr.v4i2.33656 [Google Scholar]
- Alam, M. S., Khanam, M., & Rahman, M. M. (2023). Environment-friendly nitrogen management practices in wetland paddy cultivation. Frontiers in Sustainable Food Systems, 7(2), 1020570. https://doi.org/10.3389/fsufs.2023.1020570 [Google Scholar]
- Amanullah, Khattak, R. A., & Khalil, S. K. (2009). Plant density and nitrogen effects on maize phenology and grain yield. Journal of Plant Nutrition, 32(2), 246–260. https://doi.org/10.1080/01904160802592714 [Google Scholar]
- Asif, M., Farrukh Saleem, M., Ahmad Anjum, S., Ashfaq Wahid, M., & Faisal Bilal, M. (2013). Effect of nitrogen and ZnSO4 on maize yield. Journal of Agricultural Research, 51(4), 51-60. [Google Scholar]
- Begizew, G., & Desalegn, C. (2019). Response of maize phenology and grain yield to various nitrogen rates and plant spacing at Bako, West Ethiopia. Open Journal of Plant Science, 4(1), 9–14. https://doi.org/10.17352/ojps.000016 [Google Scholar]
- Beig, B., Niazi, M. B. K., Jahan, Z., Hussain, A., Zia, M. H., & Mehran, M. T. (2020). Coating materials for slow release of nitrogen from urea fertilizer: a review. Journal of Plant Nutrition, 43(10), 1510–1533. https://doi.org/10.1080/01904167.2020.1744647 [Google Scholar]
- Bhandari, D., Shrestha, R., & Joshi, B. K. (2019). In: National Winter Crops Workshop. November 2019, Nepal Agricultural Research Council, Kathmandu: Nepal, pp. 672–686. [Google Scholar]
- Bremner, J. M. (1990). Problems in the use of urea as a nitrogen fertilizer. Soil Use and Management, 6(2), 70–71. https://doi.org/10.1111/j.1475-2743.1990.tb00804.x [Google Scholar]
- Cameron, K. C., Di, H. J., & Moir, J. L. (2013). Nitrogen losses from the soil/plant system: A review. Annals of Applied Biology, 162(2), 145–173. https://doi.org/10.1111/aab.12014 [Google Scholar]
- Cheema, M., Farhad, W., Saleem, M., Khan, H. Z., Munir, A., Wahid, M. A., & Rasul, F. (2010). Nitrogen management strategies for sustainable maize production. Crop and Environment, 1(1), 49–52. [Google Scholar]
- Chivenge, P., Vanlauwe, B., & Six, J. (2011). Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant and Soil, 342(1–2), 1–30. https://doi.org/10.1007/s11104-010-0626-5 [Google Scholar]
- Dawadi, D., & Sah, S. (2012). Growth and Yield of Hybrid Maize (Zea mays L.) in Relation to Planting Density and Nitrogen Levels during Winter Season in Nepal. Tropical Agricultural Research, 23(3), 218. https://doi.org/10.4038/tar.v23i3.4659 [Google Scholar]
- Demari, G., Carvalho, I., Nardino, M., JSzareski, V., Dellagostin, S., da Rosa, T., Follmann, N., Monteiro, M., Basso, C., Pedó, T., Aumonde, T., & Zimmer, P. (2016). Importance of Nitrogen in Maize Production. International Journal of Current Research, 8(8), 36629–36634. [Google Scholar]
- Dhakal, S., Sah, S. K., Amgain, L. P., & Dhakal, K. H. (2022). Maize cultivation: present status, major constraints and farmer’s perception at Madichaur, Rolpa. Journal of Agriculture and Forestry University, 5, 125–131. https://doi.org/10.3126/jafu.v5i1.48454 [Google Scholar]
- Dhital, G., Marahatta, S., Karki, T. B., & Basnet, K. B. (2022). Response of Different Levels of Nitrogen and Plant Population to Grain Yield of Winter Hybrid Maize in Chitwan Valley. Agronomy Journal of Nepal, 6(1), 59–68. https://doi.org/10.3126/ajn.v6i1.47938 [Google Scholar]
- Eni (1967). Site specific and dynamic nitrogen management strategies in hybrid maize. Angewandte Chemie International Edition, 6(11), 951–952. [Google Scholar]
- Evenson, R. E., & Gollin, D. (2003). Assessing the impact of the Green Revolution, 1960 to 2000. Science, 300(5620), 758–762. https://doi.org/10.1126/science.1078710 [Google Scholar]
- Ferguson, R. B., Hergert, G. W., Schepers, J. S., Gotway, C. A., Cahoon, J. E., & Peterson, T. A. (2002). Site-specific nitrogen management of irrigated maize: yield and soil residual nitrate effects. Soil Science Society of America Journal, 66, 544–553. [Google Scholar]
- Fixen, P. E. (2020). A brief account of the genesis of 4R nutrient stewardship. Agronomy Journal, 112(5), 4511–4518. https://doi.org/10.1002/agj2.20315 [Google Scholar]
- Ghafoor, I., Habib-ur-Rahman, M., Ali, M., Afzal, M., Ahmed, W., Gaiser, T., & Ghaffar, A. (2021). Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Environmental Science and Pollution Research, 28(32), 43528–43543. https://doi.org/10.1007/s11356-021-13700-4 [Google Scholar]
- Ghimire, P., Dahal, K. R., Marahatta, S., Devkota, K., & Ghimire, B. R. (2015). Site-Specific Nutrient Management for Rainfed Maize in Western Mid-Hills of Nepal. International Journal of Applied Sciences and Biotechnology, 3(2), 227–231. https://doi.org/10.3126/ijasbt.v3i2.12538 [Google Scholar]
- Ghimire, Y. N., Timsina, K. P., Devkota, D., Gautam, S., Choudhary, D., Podel, H., & Pant, J. (2019). In: 13th Asian Maize Conference on Maize for Food, Feed, Nutrition and Environmental Security. April, 2019. South Asia Regional Office, Kathmandu: Nepal. [Google Scholar]
- Govind, K. C., Karki, T. B., Shrestha, J., & Achhami, B. B. (2015). Status and prospects of maize research in Nepal. Journal of Maize Research and Development, 1(1), 1-9. https://doi.org/10.3126/jmrd.v1i1.14239 [Google Scholar]
- Gudadhe, N., Thanki, J. D., Patel, K. K., Patel, D. D., & Arvadia, M. K. (2018). Integrated nitrogen management package for sustainable maize yield and soil health with and without vermiwash. Indian Journal of Fertilisers, 14(11), 1-7. [Google Scholar]
- Hammad, H. M., Abbas, F., Ahmad, A., Farhad, W., Wilkerson, C. J., & Hoogenboom, G. (2018). Evaluation of timing and rates for nitrogen application for optimizing maize growth and development and maximizing yield. Agronomy Journal, 110(2), 565–571. https://doi.org/10.2134/agronj2017.08.0466 [Google Scholar]
- Hammad, H. M., Chawla, M. S., Jawad, R., Alhuqail, A., Bakhat, H. F., Farhad, W., Khan, F., Mubeen, M., Shah, A. N., Liu, K., Harrison, M. T., Saud, S., & Fahad, S. (2022). Evaluating the impact of nitrogen application on growth and productivity of maize under control conditions. Frontiers in Plant Science, 13, 1–11. https://doi.org/10.3389/fpls.2022.885479 [Google Scholar]
- Iqbal, M. A., Iqbal, A., Raza, A., Akbar, N., Abbas, R. N., Zaman, H., Muhammad, K., & Iqbal, A. (2014). Integrated Nitrogen Management Studies in Forage Maize. Journal of Agriculture and Environmental Sciences, 14(8), 744–747. https://doi.org/10.5829/idosi.aejaes.2014.14.08.12385 [Google Scholar]
- Karkia, M., Pantha, B. P., Subedia, P., GCa, A., & Regmib, R. (2020). Effect of different doses of nitrogen on production of spring Maize (Zea mays) in Gulmi, Nepal. Sustainability in Food and Agriculture, 1(1), 1-5. https://doi.org/10.26480/sfna.01.2020.01.05 [Google Scholar]
- Lawrencia, D., Wong, S. K., Low, D. Y. S., Goh, B. H., Goh, J. K., Ruktanonchai, U. R., Soottitantawat, A., Lee, L. H., & Tang, S. Y. (2021). Controlled release fertilizers: A review on coating materials and mechanism of release. Plants, 10(2), 1–26. https://doi.org/10.3390/plants10020238 [Google Scholar]
- Marahatta, S. (2020). Nitrogen levels influence barrenness and sterility of maize varieties under different establishment methods during hot spring in western Terai of Nepal. Journal of Agriculture and Forestry University, 4, 117–127. https://doi.org/10.3126/jafu.v4i1.47056 [Google Scholar]
- Misselbrook, T. H., Cardenas, L. M., Camp, V., Thorman, R. E., Williams, J. R., Rollett, A. J., & Chambers, B. J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9(11), 115006. https://doi.org/10.1088/1748-9326/9/11/115006 [Google Scholar]
- Nayak, R., Satapathy, M., Rath, B., Panda, K., Paikaray, R. K., & Jena, S. (2023). Effect of site specific nitrogen management on growth, yield attributes and yield of kharif rice (Oryza sativa L.) in rice-groundnut cropping system in Odisha. The Pharma Innovation Journal, 12(2), 2063-2067. [Google Scholar]
- Peng, S., Buresh, R. J., Huang, J., Zhong, X., Zou, Y., Yang, J., Wang, G., Liu, Y., Hu, R., Tang, Q., Cui, K., Zhang, F., & Dobermann, A. (2010). Improving nitrogen fertilization in rice by site-specific N management. A review. Agronomy for Sustainable Development, 30(3), 649–656. https://doi.org/10.1051/agro/2010002 [Google Scholar]
- Sandhu, N., Sethi, M., Kumar, A., Dang, D., Singh, J., & Chhuneja, P. (2021). Biochemical and Genetic Approaches Improving Nitrogen Use Efficiency in Cereal Crops: A Review. Frontiers in Plant Science, 12, 657629. https://doi.org/10.3389/fpls.2021.657629 [Google Scholar]
- Sarwar, N., Atique-ur-Rehman, Farooq, O., Wasaya, A., Hussain, M., El-Shehawi, A. M., Ahmad, S., Brestic, M., Mahmoud, S. F., Zivcak, M., & Farooq, S. (2021). Integrated nitrogen management improves productivity and economic returns of wheat-maize cropping system. Journal of King Saud University - Science, 33(5), 101475. https://doi.org/10.1016/j.jksus.2021.101475 [Google Scholar]
- Scharf, P., Lory, J., & Grundler, J. (2006). Best management practices for nitrogen fertilizer in Missouri. MU Extension IPM1027, pp. 1–11. Available online: http://ipm.missouri.edu (accessed on 01 August 2023). [Google Scholar]
- Sharifi, R. S., & Namvar, A. (2016). Effects of time and rate of nitrogen application on phenology and some agronomical traits of maize (Zea mays L.). Biologija, 62(1). https://doi.org/10.6001/biologija.v62i1.3288 [Google Scholar]
- Sharifi, R. S., & Taghizadeh, R. (2009). Response of maize (Zea mays L.) cultivars to different levels of nitrogen fertilizer. Journal of Food, Agriculture and Environment, 7(3–4), 518–521. [Google Scholar]
- Sharma, L. K., & Bali, S. K. (2018). A review of methods to improve nitrogen use efficiency in agriculture. Sustainability (Switzerland), 10(1), 1–23. https://doi.org/10.3390/su10010051 [Google Scholar]
- Sun, H., Zhang, H., Powlson, D., Min, J., & Shi, W. (2015). Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine. Field Crops Research, 173, 1–7. https://doi.org/10.1016/j.fcr.2014.12.012 [Google Scholar]
- Varinderpal-Singh, Kunal, Kaur, J., Bhatt, R., Kaur, S., Dhillon, B. S., Singh, K. B., Singh, S., Sharma, S., & Bijay-Singh. (2023). Site-specific fertilizer nitrogen management in less and high n responsive basmati rice varieties using newly developed PAU-leaf colour chart. Communications in Soil Science and Plant Analysis, 54(10), 1334–1349. https://doi.org/10.1080/00103624.2022.2144346 [Google Scholar]
- Wang, D., & Wang, D. (2022). Improved nitrogen use efficiency and greenhouse gas emissions in agricultural soils as producers of biological nitrification inhibitors. Frontiers in Plant Science, 13, 854195. https://doi.org/10.3389/fpls.2022.854195 [Google Scholar]
- Yadav, G., Rai, S., Adhikari, N., Yadav, S. P. S., & Bhattarai, S. (2022). Efficacy of different doses of NPK on growth and yield of rice bean (Vigna umbellata) in Khadbari, Sankhuwasabha, Nepal. Archives of Agriculture and Environmental Science, 7(4), 488-494. https://doi.org/10.26832/24566632.2022.070401 [Google Scholar]
- Yadav, S. P. S., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., & Oli, B. (2023b). Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research, 100498. https://doi.org/10.1016/j.jafr.2023.100498 [Google Scholar]
- Yadav, S. P. S., Lahutiya, V., Ghimire, N. P., Yadav, B., & Paudel, P. (2023a). Exploring innovation for sustainable agriculture: A systematic case study of permaculture in Nepal. Heliyon, 9(5). https://doi.org/10.1016/j.heliyon.2023.e15899 [Google Scholar]
- Yang, M., Fang, Y., Sun, D., & Shi, Y. (2016). Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: A meta-analysis. Scientific Reports, 6, 1–10. https://doi.org/10.1038/srep22075 [Google Scholar]
- Yao, Z., Zhang, W., Wang, X., Zhang, L., Zhang, W., Liu, D., & Chen, X. (2021). Agronomic, environmental, and ecosystem economic benefits of controlled-release nitrogen fertilizers for maize production in Southwest China. Journal of Cleaner Production, 312, 127611. https://doi.org/10.1016/j.jclepro.2021.127611 [Google Scholar]

