A Review on Impact of Different Nitrogen Management Techniques on Maize (Zea mays L.) Crop Performance

Jyoti Kafle 1 , Laxmi Bhandari 2 , Salina Neupane 3 , Saraswati Aryal 4

1   Institute of Agriculture and Animal Science, Bhairahawa 32900, Nepal
2   Institute of Agriculture and Animal Science, Bhairahawa 32900, Nepal
3   Institute of Agriculture and Animal Science, Bhairahawa 32900, Nepal
4   Institute of Agriculture and Animal Science, Bhairahawa 32900, Nepal https://orcid.org/0009-0006-7952-3606

✉ Author responsible for correspondence: This information is protected, please see article PDF.

doi 10.59983/s20230102012

doi

Abstract

Nitrogen (N), as a primary nutrient requirement of maize (Zea mays L.), plays a critical role in its development and productivity. Proper nitrogen management practices involve a delicate balance between providing an adequate amount of this nutrient and mitigating potential environmental impacts. When implemented effectively, these practices can significantly improve corn production. An adequate nitrogen supply promotes vigorous vegetative growth, contributing to strong stalks and an abundance of leaves, which are essential for maximizing the plant's photosynthetic capacity. This lush foliage, in turn, leads to increased photosynthesis and carbohydrate production, providing the energy maize needs throughout the reproductive stage to develop and fill its kernels. In addition, nitrogen is closely linked to kernel development. Well-timed and dosed nitrogen applications can result in larger, well-filled ears with plump kernels, ultimately increasing both the quantity and quality of the maize yield. Environmental considerations, such as reducing nitrogen runoff and greenhouse gas emissions, are important for maintaining ecosystems and mitigating climate change. Thus, this review article highlights the need for a holistic approach to nitrogen management, combining innovative techniques with sustainable agricultural practices, to ensure food security and environmental conservation in maize production systems.

Keywords:

environmental impact, four Rs’ approach, maize, nitrogen

Downloads

Download data is not yet available.

References

Adhikari, K., Bhandari, S., Aryal, K., Mahato, M., & Shrestha, J. (2021). Effect of different levels of nitrogen on growth and yield of hybrid maize (Zea mays L.) varieties. Journal of Agriculture and Natural Resources, 4(2), 48–62. https://doi.org/10.3126/janr.v4i2.33656

Alam, M. S., Khanam, M., & Rahman, M. M. (2023). Environment-friendly nitrogen management practices in wetland paddy cultivation. Frontiers in Sustainable Food Systems, 7(2), 1020570. https://doi.org/10.3389/fsufs.2023.1020570

Amanullah, Khattak, R. A., & Khalil, S. K. (2009). Plant density and nitrogen effects on maize phenology and grain yield. Journal of Plant Nutrition, 32(2), 246–260. https://doi.org/10.1080/01904160802592714

Asif, M., Farrukh Saleem, M., Ahmad Anjum, S., Ashfaq Wahid, M., & Faisal Bilal, M. (2013). Effect of nitrogen and ZnSO4 on maize yield. Journal of Agricultural Research, 51(4), 51-60.

Begizew, G., & Desalegn, C. (2019). Response of maize phenology and grain yield to various nitrogen rates and plant spacing at Bako, West Ethiopia. Open Journal of Plant Science, 4(1), 9–14. https://doi.org/10.17352/ojps.000016

Beig, B., Niazi, M. B. K., Jahan, Z., Hussain, A., Zia, M. H., & Mehran, M. T. (2020). Coating materials for slow release of nitrogen from urea fertilizer: a review. Journal of Plant Nutrition, 43(10), 1510–1533. https://doi.org/10.1080/01904167.2020.1744647

Bhandari, D., Shrestha, R., & Joshi, B. K. (2019). In: National Winter Crops Workshop. November 2019, Nepal Agricultural Research Council, Kathmandu: Nepal, pp. 672–686.

Bremner, J. M. (1990). Problems in the use of urea as a nitrogen fertilizer. Soil Use and Management, 6(2), 70–71. https://doi.org/10.1111/j.1475-2743.1990.tb00804.x

Cameron, K. C., Di, H. J., & Moir, J. L. (2013). Nitrogen losses from the soil/plant system: A review. Annals of Applied Biology, 162(2), 145–173. https://doi.org/10.1111/aab.12014

Cheema, M., Farhad, W., Saleem, M., Khan, H. Z., Munir, A., Wahid, M. A., & Rasul, F. (2010). Nitrogen management strategies for sustainable maize production. Crop and Environment, 1(1), 49–52.

Chivenge, P., Vanlauwe, B., & Six, J. (2011). Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant and Soil, 342(1–2), 1–30. https://doi.org/10.1007/s11104-010-0626-5

Dawadi, D., & Sah, S. (2012). Growth and Yield of Hybrid Maize (Zea mays L.) in Relation to Planting Density and Nitrogen Levels during Winter Season in Nepal. Tropical Agricultural Research, 23(3), 218. https://doi.org/10.4038/tar.v23i3.4659

Demari, G., Carvalho, I., Nardino, M., JSzareski, V., Dellagostin, S., da Rosa, T., Follmann, N., Monteiro, M., Basso, C., Pedó, T., Aumonde, T., & Zimmer, P. (2016). Importance of Nitrogen in Maize Production. International Journal of Current Research, 8(8), 36629–36634.

Dhakal, S., Sah, S. K., Amgain, L. P., & Dhakal, K. H. (2022). Maize cultivation: present status, major constraints and farmer’s perception at Madichaur, Rolpa. Journal of Agriculture and Forestry University, 5, 125–131. https://doi.org/10.3126/jafu.v5i1.48454

Dhital, G., Marahatta, S., Karki, T. B., & Basnet, K. B. (2022). Response of Different Levels of Nitrogen and Plant Population to Grain Yield of Winter Hybrid Maize in Chitwan Valley. Agronomy Journal of Nepal, 6(1), 59–68. https://doi.org/10.3126/ajn.v6i1.47938

Eni (1967). Site specific and dynamic nitrogen management strategies in hybrid maize. Angewandte Chemie International Edition, 6(11), 951–952.

Evenson, R. E., & Gollin, D. (2003). Assessing the impact of the Green Revolution, 1960 to 2000. Science, 300(5620), 758–762. https://doi.org/10.1126/science.1078710

Ferguson, R. B., Hergert, G. W., Schepers, J. S., Gotway, C. A., Cahoon, J. E., & Peterson, T. A. (2002). Site-specific nitrogen management of irrigated maize: yield and soil residual nitrate effects. Soil Science Society of America Journal, 66, 544–553.

Fixen, P. E. (2020). A brief account of the genesis of 4R nutrient stewardship. Agronomy Journal, 112(5), 4511–4518. https://doi.org/10.1002/agj2.20315

Ghafoor, I., Habib-ur-Rahman, M., Ali, M., Afzal, M., Ahmed, W., Gaiser, T., & Ghaffar, A. (2021). Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Environmental Science and Pollution Research, 28(32), 43528–43543. https://doi.org/10.1007/s11356-021-13700-4

Ghimire, P., Dahal, K. R., Marahatta, S., Devkota, K., & Ghimire, B. R. (2015). Site-Specific Nutrient Management for Rainfed Maize in Western Mid-Hills of Nepal. International Journal of Applied Sciences and Biotechnology, 3(2), 227–231. https://doi.org/10.3126/ijasbt.v3i2.12538

Ghimire, Y. N., Timsina, K. P., Devkota, D., Gautam, S., Choudhary, D., Podel, H., & Pant, J. (2019). In: 13th Asian Maize Conference on Maize for Food, Feed, Nutrition and Environmental Security. April, 2019. South Asia Regional Office, Kathmandu: Nepal.

Govind, K. C., Karki, T. B., Shrestha, J., & Achhami, B. B. (2015). Status and prospects of maize research in Nepal. Journal of Maize Research and Development, 1(1), 1-9. https://doi.org/10.3126/jmrd.v1i1.14239

Gudadhe, N., Thanki, J. D., Patel, K. K., Patel, D. D., & Arvadia, M. K. (2018). Integrated nitrogen management package for sustainable maize yield and soil health with and without vermiwash. Indian Journal of Fertilisers, 14(11), 1-7.

Hammad, H. M., Abbas, F., Ahmad, A., Farhad, W., Wilkerson, C. J., & Hoogenboom, G. (2018). Evaluation of timing and rates for nitrogen application for optimizing maize growth and development and maximizing yield. Agronomy Journal, 110(2), 565–571. https://doi.org/10.2134/agronj2017.08.0466

Hammad, H. M., Chawla, M. S., Jawad, R., Alhuqail, A., Bakhat, H. F., Farhad, W., Khan, F., Mubeen, M., Shah, A. N., Liu, K., Harrison, M. T., Saud, S., & Fahad, S. (2022). Evaluating the impact of nitrogen application on growth and productivity of maize under control conditions. Frontiers in Plant Science, 13, 1–11. https://doi.org/10.3389/fpls.2022.885479

Iqbal, M. A., Iqbal, A., Raza, A., Akbar, N., Abbas, R. N., Zaman, H., Muhammad, K., & Iqbal, A. (2014). Integrated Nitrogen Management Studies in Forage Maize. Journal of Agriculture and Environmental Sciences, 14(8), 744–747. https://doi.org/10.5829/idosi.aejaes.2014.14.08.12385

Karkia, M., Pantha, B. P., Subedia, P., GCa, A., & Regmib, R. (2020). Effect of different doses of nitrogen on production of spring Maize (Zea mays) in Gulmi, Nepal. Sustainability in Food and Agriculture, 1(1), 1-5. https://doi.org/10.26480/sfna.01.2020.01.05

Lawrencia, D., Wong, S. K., Low, D. Y. S., Goh, B. H., Goh, J. K., Ruktanonchai, U. R., Soottitantawat, A., Lee, L. H., & Tang, S. Y. (2021). Controlled release fertilizers: A review on coating materials and mechanism of release. Plants, 10(2), 1–26. https://doi.org/10.3390/plants10020238

Marahatta, S. (2020). Nitrogen levels influence barrenness and sterility of maize varieties under different establishment methods during hot spring in western Terai of Nepal. Journal of Agriculture and Forestry University, 4, 117–127. https://doi.org/10.3126/jafu.v4i1.47056

Misselbrook, T. H., Cardenas, L. M., Camp, V., Thorman, R. E., Williams, J. R., Rollett, A. J., & Chambers, B. J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9(11), 115006. https://doi.org/10.1088/1748-9326/9/11/115006

Nayak, R., Satapathy, M., Rath, B., Panda, K., Paikaray, R. K., & Jena, S. (2023). Effect of site specific nitrogen management on growth, yield attributes and yield of kharif rice (Oryza sativa L.) in rice-groundnut cropping system in Odisha. The Pharma Innovation Journal, 12(2), 2063-2067.

Peng, S., Buresh, R. J., Huang, J., Zhong, X., Zou, Y., Yang, J., Wang, G., Liu, Y., Hu, R., Tang, Q., Cui, K., Zhang, F., & Dobermann, A. (2010). Improving nitrogen fertilization in rice by site-specific N management. A review. Agronomy for Sustainable Development, 30(3), 649–656. https://doi.org/10.1051/agro/2010002

Sandhu, N., Sethi, M., Kumar, A., Dang, D., Singh, J., & Chhuneja, P. (2021). Biochemical and Genetic Approaches Improving Nitrogen Use Efficiency in Cereal Crops: A Review. Frontiers in Plant Science, 12, 657629. https://doi.org/10.3389/fpls.2021.657629

Sarwar, N., Atique-ur-Rehman, Farooq, O., Wasaya, A., Hussain, M., El-Shehawi, A. M., Ahmad, S., Brestic, M., Mahmoud, S. F., Zivcak, M., & Farooq, S. (2021). Integrated nitrogen management improves productivity and economic returns of wheat-maize cropping system. Journal of King Saud University - Science, 33(5), 101475. https://doi.org/10.1016/j.jksus.2021.101475

Scharf, P., Lory, J., & Grundler, J. (2006). Best management practices for nitrogen fertilizer in Missouri. MU Extension IPM1027, pp. 1–11. Available online: http://ipm.missouri.edu (accessed on 01 August 2023).

Sharifi, R. S., & Namvar, A. (2016). Effects of time and rate of nitrogen application on phenology and some agronomical traits of maize (Zea mays L.). Biologija, 62(1). https://doi.org/10.6001/biologija.v62i1.3288

Sharifi, R. S., & Taghizadeh, R. (2009). Response of maize (Zea mays L.) cultivars to different levels of nitrogen fertilizer. Journal of Food, Agriculture and Environment, 7(3–4), 518–521.

Sharma, L. K., & Bali, S. K. (2018). A review of methods to improve nitrogen use efficiency in agriculture. Sustainability (Switzerland), 10(1), 1–23. https://doi.org/10.3390/su10010051

Sun, H., Zhang, H., Powlson, D., Min, J., & Shi, W. (2015). Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine. Field Crops Research, 173, 1–7. https://doi.org/10.1016/j.fcr.2014.12.012

Varinderpal-Singh, Kunal, Kaur, J., Bhatt, R., Kaur, S., Dhillon, B. S., Singh, K. B., Singh, S., Sharma, S., & Bijay-Singh. (2023). Site-specific fertilizer nitrogen management in less and high n responsive basmati rice varieties using newly developed PAU-leaf colour chart. Communications in Soil Science and Plant Analysis, 54(10), 1334–1349. https://doi.org/10.1080/00103624.2022.2144346

Wang, D., & Wang, D. (2022). Improved nitrogen use efficiency and greenhouse gas emissions in agricultural soils as producers of biological nitrification inhibitors. Frontiers in Plant Science, 13, 854195. https://doi.org/10.3389/fpls.2022.854195

Yadav, G., Rai, S., Adhikari, N., Yadav, S. P. S., & Bhattarai, S. (2022). Efficacy of different doses of NPK on growth and yield of rice bean (Vigna umbellata) in Khadbari, Sankhuwasabha, Nepal. Archives of Agriculture and Environmental Science, 7(4), 488-494. https://doi.org/10.26832/24566632.2022.070401

Yadav, S. P. S., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., & Oli, B. (2023b). Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research, 100498. https://doi.org/10.1016/j.jafr.2023.100498

Yadav, S. P. S., Lahutiya, V., Ghimire, N. P., Yadav, B., & Paudel, P. (2023a). Exploring innovation for sustainable agriculture: A systematic case study of permaculture in Nepal. Heliyon, 9(5). https://doi.org/10.1016/j.heliyon.2023.e15899

Yang, M., Fang, Y., Sun, D., & Shi, Y. (2016). Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: A meta-analysis. Scientific Reports, 6, 1–10. https://doi.org/10.1038/srep22075

Yao, Z., Zhang, W., Wang, X., Zhang, L., Zhang, W., Liu, D., & Chen, X. (2021). Agronomic, environmental, and ecosystem economic benefits of controlled-release nitrogen fertilizers for maize production in Southwest China. Journal of Cleaner Production, 312, 127611. https://doi.org/10.1016/j.jclepro.2021.127611

Downloads

Published

26-09-2023

How to Cite

Kafle, J., Bhandari, L., Neupane, S., & Aryal, S. (2023). A Review on Impact of Different Nitrogen Management Techniques on Maize (Zea mays L.) Crop Performance. AgroEnvironmental Sustainability, 1(2), 192–198. https://doi.org/10.59983/s20230102012