Exploring Genetic Diversity and Variability of Tamarind (Tamarindus indica L.): A Comprehensive Study in the Bilaspur Region of Chhattisgarh, India

Open Access
Download PDF
AgroEnvironmental Sustainability
Ankit Ojha , Shiv Shankar Dhuria , Arun Kumar Shukla , Alok Kumar Chandrakar

Abstract

The genetic diversity and variability of Tamarindus indica L., a valuable multipurpose tree species, was investigated through a comprehensive study conducted in the Bilaspur region. This research aimed to assess the morphological variations and growth responses of T. indica under contrasting environments, specifically agroforestry and natural forest systems. The study employed a rigorous scientific approach, encompassing field surveys, statistical analyses, and morphological assessments. The results indicated pronounced morphological differences between T. indica trees in the agroforestry and natural forest systems. T. indica trees in the natural forest exhibited significantly greater average height and diameter at the breast height (DBH) compared to those in agroforestry settings, highlighting the influence of the environment on growth parameters. Here, the crown diameter displayed homogeneity across both environments, suggesting a potential level of adaptability in this trait. The findings show the importance of considering environmental conditions when assessing the growth and development of T. indica, providing valuable insights for both scientific research and practical applications in agroforestry and conservation efforts.

Keywords

genetic diversity variability Tamarindus indica

References

  1. Abasse, T., Weber, J. C., Katkore, B., Boureima, M., Larwanou, M., & Kalinganire, A. (2011). Morphological variation in Balanitesa egyptiaca fruits and seeds within and among parkland agroforests in eastern Niger. Agroforestry Systems, 81, 57-66. https://doi.org/10.1007/s10457-010-9323-x [Google Scholar]
  2. Adeola, A., & Aworh, O. (2010). Sugar and dietary fibre components of tamarind (Tamarindus indica L.) Fruits from Nigeria. Nigerian Food Journal, 28(2), 1-10. https://doi.org/10.4314/nifoj.v28i2.62633 [Google Scholar]
  3. Álvarez, H., Limongi, R., Peña, G., Navarrete, B., Zambrano, E., & Viera, W. (2019). Agro-Morphological Characterization ‘In situ’ of Tamarindus indica L. in the Dry Forest of Ecuador. Pertanika Journal of Tropical Agricultural Science, 42(3), 1-10. [Google Scholar]
  4. Azad, M. S., Nahar, N., & Matin, M. A. (2013). Effects of variation in seed sources and pre-sowing treatments on seed germination of Tamarindus indica: a multi-purpose tree species in Bangladesh. Forest Science and Practice, 15, 121-129. https://doi.org/10.1007/s11632-013-0211-0 [Google Scholar]
  5. Azad, M. S., Nahar, N., Mollick, A. S., & Matin, M. A. (2014). Variation in Seedling Growth of Tamarindus indica (L.): a threatening medicinal fruit tree species in Bangladesh. Journal of Ecosystems, 2014, 1-10. https://doi.org/10.1155/2014/270956 [Google Scholar]
  6. Cervantes, E., & Diego, J. G. D. (2010). Morphological description of plants: New perspectives in development and evolution. International Journal of Plant Developmental Biology, 4(1), 68-71. [Google Scholar]
  7. Chandrakar, A. K. (2012). Biodiversity Conservation in India. Technical Report: Central University of Gujarat Sec. 30, Gandhinagar, India. https://doi.org/10.13140/RG.2.1.1490.3208 [Google Scholar]
  8. Chandrakar, A. K., Yadav, K. K., Gupta, N. & Kumar, V. (2016). Current scenario of Biodiversity Conservation in India: An overview, Photon Publication, (E-book: UBN No. 015-A94510112027), pp 04. [Google Scholar]
  9. Dangasuk, O. G., Seurei, P., & Gudu, S. (1997). Genetic variation in seed and seedling traits in 12 African provenances of Faidherbia albida (Del.) A. Chev. At Lodwar, Kenya. Agroforestry systems, 37, 133-141. https://doi.org/10.1023/A:1005865502289 [Google Scholar]
  10. Das, D. K., & Alam, M. K. (2001). Trees of Bangladesh. Bangladesh Forest Research Institute, Chittagong. https://doi.org/10.5555/20033064018 [Google Scholar]
  11. Divakara, B. N. (2008). Variation and character association for various pod traits in Tamarindus indica L. Indian Forester, 134(5), 687. [Google Scholar]
  12. Doughari, J. H. (2006). Antimicrobial activity of Tamarindus indica Linn. Tropical Journal of Pharmaceutical Research, 5(2), 597-603. https://doi.org/10.4314/tjpr.v5i2.14637 [Google Scholar]
  13. El-Siddig, K., Gunasena, H. P. M., Prasad, B. A., Pushpakumara, D. K. N. G., Ramana, K. V. R., Vijayanand, P., & Williams, J. T. (2006). Tamarind: Tamarindus indica L. Southampton Centre for Underutilised Crops, Southampton, UK. [Google Scholar]
  14. Fandohan, A. B., Assogbadjo, A. E., GlèlèKakaï, R., Kyndt, T., & Sinsin, B. (2011). Quantitative morphological descriptors confirm traditionally classified morphotypes of Tamarindus indica L. fruits. Genetic Resources and Crop Evolution, 58, 299-309. https://doi.org/10.1007/s10722-010-9575-3 [Google Scholar]
  15. Fandohan, A. B., Assogbadjo, A. E., Kakaï, R. G., & Sinsin, B. (2010b). Variation in seed morphometric traits, germination and early seedling growth performances of Tamarindus indica L. International Journal of Biological and Chemical Sciences, 4(4). https://doi.org/10.4314/ijbcs.v4i4.63047 [Google Scholar]
  16. Fandohan, A. B., Assogbadjo, A. E., Kakaï, R. L. G., Sinsin, B., & Van Damme, P. (2010a). Impact of habitat type on the conservation status of tamarind (Tamarindus indica L.) populations in the W National Park of Benin. Fruits, 65(1), 11-19. https://doi.org/10.1051/fruits/2009037 [Google Scholar]
  17. Finch‐Savage, W. E. (1986). A study of the relationship between seedling characters and rate of germination within a seed lot. Annals of Applied Biology, 108(2), 441-444. https://doi.org/10.1111/j.1744-7348.1986.tb07667.x [Google Scholar]
  18. Food and Agriculture Organization of the United Nations (FAO) (2013). Report of the 14th Regular Session of the Commission on Genetic Resources for Food and Agriculture, USA. [Google Scholar]
  19. Foster, S. A. (1986). On the adaptive value of large seeds for tropical moist forest trees: a review and synthesis. The Botanical Review, 52, 260-299. https://doi.org/10.1007/BF02860997 [Google Scholar]
  20. Gullipalli, S.R. & Kasiviswanatham, V. (2013). Extraction of Tartaric Acid from Tamarind Pulp and Analysis of the Acid Composition in Leaves. International Journal of Students' Research in Technology and Management, 1(5): 478-88. [Google Scholar]
  21. Gupta, C., Prakash, D., & Gupta, S. (2014). Studies on the antimicrobial activity of Tamarind (Tamarindus indica) and its potential as food bio-preservative. International Food Research Journal, 21(6), 2437-2441. [Google Scholar]
  22. Gupta, D. K., Bhatt, R. K., mohamed, M. N., Shukla, A. K., & Jangid, B. L. (2019). Carbon sequestration potential of Hardwickia binate Roxb. based agroforestry in hot semi-arid environment of India. Current science, 116(1), 112-116. [Google Scholar]
  23. Hallwachs, W. (1986). Agoutis (Dasyprocta punctata): The Inheritors of Guapinol (Hymenaea courbaril: Leguminosae). In: Estrada, A., Fleming, T.H. (eds) Frugivores and seed dispersal. Tasks for vegetation science, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4812-9_25 [Google Scholar]
  24. Joukhadar, I. S., Walker, S. J., & Funk, P. A. (2018). Comparative mechanical harvest efficiency of six New Mexico pod–type green chile pepper cultivars. Hort Technology, 28(3), 310-318. https://doi.org/10.21273/HORTTECH03999-18 [Google Scholar]
  25. Khan, M. L. (2004). Effects of seed mass on seedling success in Artocarpus heterophyllus L., a tropical tree species of north-east India. Acta Oecologica, 25(1-2), 103-110. https://doi.org/10.1016/j.actao.2003.11.007 [Google Scholar]
  26. Kidaha, M. L., Kariuki, W., Rimberia, F. K., & Wekesa, R. K. (2019). Evaluation of morphological diversity of tamarind (Tamarindus indica) accessions from Eastern parts of Kenya. Journal of Horticulture and Forestry, 11(1), 1-7. https://doi.org/10.5897/JHF2018.0552 [Google Scholar]
  27. Kumar, R., Mehta, H., Kaushal, R., Banyal, R., & Kumar, M. (2018). Influence of provenance variation on seedling characteristics of Celtis australis in nursery environment. Indian Journal of Ecology, 45(4), 797-801. [Google Scholar]
  28. Lakor, J., Elepu, G., Buyinza, M. J., and Nyeko, P. (2016). Analysis of tamarindus (Tamarindus indica L.) value chain in Uganda: identification of opportunities and constraints to its commercialization and domestication. Journal of Agriculture and Environmental Sciences, 5(1), 101-112. [Google Scholar]
  29. López‐Castañeda, C., Richards, R. A., Farquhar, G. D., & Williamson, R. E. (1996). Seed and seedling characteristics contributing to variation in early vigor among temperate cereals. Crop Science, 36(5), 1257-1266. https://doi.org/10.2135/cropsci1996. 0011183X003600050031x [Google Scholar]
  30. Mamo, N., Mihretu, M., Fekadu, M., Tigabu, M., & Teketay, D. (2006). Variation in seed and germination characteristics among Juniperus procera populations in Ethiopia. Forest ecology and management, 225(1-3), 320-327. https://doi.org/10.1016/j.foreco.2006.01.026 [Google Scholar]
  31. Masette, M., Isabirye‐Basuta, G., Baranga, D., Chapman, C. A., & Rothman, J. M. (2015). The challenge of interpreting primate diets: mangabey foraging on Blighia unijugata fruit in relation to changing nutrient content. African Journal of Ecology, 53(3), 259-267. https://doi.org/10.1111/aje.12174 [Google Scholar]
  32. Meyer, S. E., & Carlson, S. L. (2001). Achene mass variation in Ericameriana useosus (Asteraceae) in relation to dispersal ability and seedling fitness. Functional Ecology, 15(2), 274-281. https://doi.org/10.1046/j.1365-2435.2001.00520.x [Google Scholar]
  33. Motamayor, J. C., Lachenaud, P., Da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PloS One, 3(10), e3311. https://doi.org/10.1371/journal.pone.0003311 [Google Scholar]
  34. Nyadoi, P., Okori, P., Okullo, J. B. L., Obua, J., Burg, K., Nasoro, M., Saleh, H., Temu, A. B. & Jamnadass, R. (2009). Tamarinds' (Tamarindus indica L.) niche tree species diversity characterisation reveals conservation needs and strategies. International Journal of Biodiversity and Conservation, 1(4), 151-176. [Google Scholar]
  35. Okello, J., Okullo, J. B. L., Eilu, G., Nyeko, P., & Obua, J. (2018). Morphological Variations in Tamarindus indica Linn. Fruits and Seed Traits in the Different Agroecological Zones of Uganda. International Journal of Ecology, 2018, 1-12. https://doi.org/10.1155/2018/8469156 [Google Scholar]
  36. Rajamanickam, C., Baskaran, A., Ravindran, C., Sundaraiya, K & Vani, V. (2023). Genetic diversity in tamarind (Tamarindus indica L.). The Pharma Innovation Journal, 12(5), 1921-1926. [Google Scholar]
  37. Rhoades, C. C. (1996). Single-tree influences on soil properties in agroforestry: lessons from natural forest and savanna ecosystems. Agroforestry systems, 35, 71-94. https://doi.org/10.1007/BF02345330 [Google Scholar]
  38. Rosenzweig, C., Casassa, G., Karoly, D. J. et al. (2007). Assessment of observed changes and responses in natural and managed systems. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, pp. 79-131. [Google Scholar]
  39. Sanogo, D., Ky-Dembele, C., Camara, B. A., Ba, H. S., Badji, M., Ngom, N. A., Diop, M., Drame, M., Sall, M. & Bayala, J. (2023). Growth and profitability performance of three accessions grafts and seedlings of Tamarindus indica (Fabaceae) planted in the Groundnut Basin of Senegal. Agroforestry Systems, 1-14. https://doi.org/10.1007/s10457-023-00827-1 [Google Scholar]
  40. Santos, R. C., Pires, J. L. & Correa, R. X. (2012). Morphological Characterization of Leaf, flower, Fruit and Seed Traits among Brazilian Theobroma L. Species. Genetic Resources and Crop Evolution, 59(3), 327-345. https://doi.org/10.1007/s10722-011-9685-6 [Google Scholar]
  41. Sidibé, D., Sanou, H., Teklehaimanot, Z., Mahamadi, D., & Koné, S. (2012). The use of mycorrhizal inoculation in the domestication of Ziziphus mauritiana and Tamarindus indica in Mali (West Africa). Agroforestry systems, 85, 519-528. https://doi.org/10.1007/s10457-012-9486-8 [Google Scholar]
  42. Singh, N., Tamta, K., Tewari, A., & Ram, J. (2014). Studies on vegetational analysis and regeneration status of Pinusroxburghii, Roxb. And Quercusleuco trichophora forests of Nainital Forest Division. Global Journal of Science Frontier Research, 14(3), 41-47. [Google Scholar]
  43. Sobola, O. O., Olusola, J. A., Maiguru, A. A., Zaku, S. S., & Mngueter, N. (2023). Morphological Variation of Tamarindus indica Linn in Benue State, Nigeria. In Sustainable Production and Consumption of Forest Products, pp. 106. [Google Scholar]
  44. Thomson, A. J., & El-Kassaby, Y. A. (1993). Interpretation of seed-germination parameters. New Forests, 7, 123-132. https://doi.org/10.1007/BF00034195 [Google Scholar]
  45. Tiwari, S. K., & Dhuria, S. S. (2018). Variability Studies of POD and Seed Characterstics of Albizia Procera in Chhattisgarh. International Journal of Scientific Research in Biological Sciences, 5, 27-31. https://doi.org/10.26438/ijsrbs/v5i3.2731 [Google Scholar]
  46. World Health Organization (2003). Guidelines on Good Agricultural and Collection Practices [GACP] for Medicinal Plants. World Health Organization. Available online: https://www.who.int/publications-detail-redirect/9241546271 (accessed on 10 May 2024). [Google Scholar]

Similar Articles

1-10 of 20

You may also start an advanced similarity search for this article.