Effect of Different Doses of Nitrogen on Growth and Grain Yield of Hybrid Maize (Zea mays L., Gold 97)

Open Access
Download PDF
AgroEnvironmental Sustainability
Sanjay Tamang , Asmita Tamang , Sailendra Rana Magar

Abstract

This study investigates the impact of various nitrogen doses on the growth and grain yield of hybrid maize (Zea mays L., Gold 97). Nitrogen plays an important role in crop phenology, morphology, and grain yield of maize plants. A field experiment was conducted in a randomized complete block design with six levels of nitrogen (150, 160, 170, 180, 190, and 200 kg/ha) in four replications to evaluate the effect of different doses of nitrogen on the growth and yield of maize. Germination percentage, Days to 75% tasselling and silking, plant height, number of leaves, leaf area (LAI), cobs length, grain per row, pod, and total grain yield were recorded. Maximum germination was found in 180 kg N /ha. Plant height, number of leaves, and leaf area (LAI) were found to be maximum in the plots treated with 180-200 kg/ha of N. This field experiment revealed that different nitrogen dose has significant effects on days to 75% Tasselling and silking and found to be maximum in 180 kg/ha N treated plot. Also, nitrogen has a significant effect on cobs length, and grain per row was found highest at 180 kg N/ha. The highest Grain yield was found 180 kg/ha N treated plot. Findings have demonstrated that increasing nitrogen levels can often lead to increased grain yield up to a certain point, after which the yield plateaus or even declines. These findings provide valuable guidance for optimizing agricultural practices to meet the increasing global demand for cereal crops.

Keywords

phenology replications silking tasseling

References

  1. Adhikari, K., Bhandari, S., Aryal, K., Mahato, M., & Shrestha, J. (2021). Effect of different levels of nitrogen on growth and yield of hybrid maize (Zea mays L.) varieties. Journal of Agriculture and Natural Resources, 4(2), 48–62. https://doi.org/10.3126/janr.v4i2.33656 [Google Scholar]
  2. Ahmad, H., Ahmed, U., Ullah, I., & Masud, H. (2024). Comparing Fodder Production of Maize Varieties Under Varied Nitrogen Levels. Journal of Applied Life Sciences and Environment, 56(4), 551–562. https://doi.org/10.46909/alse-564116 [Google Scholar]
  3. Amanullah, Khattak, R. A., & Khalil, S. K. (2009). Plant Density and Nitrogen Effects on Maize Phenology and Grain Yield. Journal of Plant Nutrition, 32(2), 246–260. https://doi.org/10.1080/01904160802592714 [Google Scholar]
  4. Asif, M., Saleem, M. F., Anjum, S. A., Wahid, M. A., & Bilal, M. F. (2013). Effect of nitrogen and zinc sulphate on growth and yield of maize (Zea mays L.). Journal of Agricultural Research, 51(4), 445. [Google Scholar]
  5. Aziiba, E. A., Qiang, C., & Coulter, J. A. (2019). Mechanisms of nitrogen use in maize. Agronomy, 9(12), 775. https://doi.org/10.3390/agronomy9120775 [Google Scholar]
  6. Bakry, M. M. S., Maharani, Y., & Al-Hoshani, N. (2023). Influence of maize planting methods and nitrogen fertilization rates on mealybug infestations, growth characteristics and eventual yield of maize. International Journal of Agriculture and Biology, 29(6), 401–409. [Google Scholar]
  7. Begam, A., Ray, M., Roy, D. C., & Adhikary, S. (2018). Performance of hybrid maize (Zea mays l.) in different levels and time of nitrogen application in Indo-Gangetic plains of eastern India. Journal of Experimental Biology and Agricultural Sciences, 6(6), 929–935. https://doi.org/10.18006/2018.6(6).929.935 [Google Scholar]
  8. Begizew, G., & Desalegn, C. (2019). Response of maize phenology and grain yield to various nitrogen rates and plant spacing at Bako, West Ethiopia. Open Journal of Plant Science, 4(1), 009–014. https://doi.org/10.17352/ojps.000016 [Google Scholar]
  9. Bk, A., Shrestha, J., & Subedi, R. (2018). Grain yield and yield attributing traits of maize genotypes under different planting dates. Malaysian Journal of Sustainable Agriculture, 2(2), 06–08. https://doi.org/10.26480/mjsa.02.2018.06.08 [Google Scholar]
  10. Chen, S., Liu, W., Morel, J., Parsons, D., & Du, T. (2023). Improving yield, quality, and environmental co-benefits through optimized irrigation and nitrogen management of hybrid maize in Northwest China. Agricultural Water Management, 290, 108577. https://doi.org/10.1016/j.agwat.2023.108577 [Google Scholar]
  11. Deng, H., Pan, X., Zhang, H., Xiao, Z., Xiao, R., Zhao, Z., & Chen, T. (2023). Comprehensive Regulation of Water–Nitrogen Coupling in Hybrid Seed Maize in the Hexi Oasis Irrigation Area Based on the Synergy of Multiple Indicators. Water, 15(22), 3927. https://doi.org/10.3390/w15223927 [Google Scholar]
  12. Dhakal, S., Sah, S. K., Amgain, L. P., & Dhakal, K. H. (2022). Maize cultivation: Present status, major constraints and farmer’s perception at Madichaur, Rolpa. Journal of Agriculture and Forestry University, 5(1), 125–131. https://doi.org/10.3126/jafu.v5i1.48454 [Google Scholar]
  13. Dhital, G., Marahatta, S., Karki, T. B., & Basnet, K. B. (2022). Response of Different Levels of Nitrogen and Plant Population to Grain Yield of Winter Hybrid Maize in Chitwan Valley. Agronomy Journal of Nepal, 6(1), 59–68. https://doi.org/10.3126/ajn.v6i1.47938 [Google Scholar]
  14. Durbar, S. (2016). Statistical Information on Neplalese Agriculture Government of Nepal Ministry of Agricultural Development Monitoring, Evaluation and Statistics Division Agri Statistics Section. pp. 1–219. [Google Scholar]
  15. Hammad, H. M., Abbas, F., Ahmad, A., Farhad, W., Wilkerson, C. J., & Hoogenboom, G. (2018). Evaluation of Timing and Rates for Nitrogen Application for Optimizing Maize Growth and Development and Maximizing Yield. Agronomy Journal, 110(2), 565–571. https://doi.org/10.2134/agronj2017.08.0466 [Google Scholar]
  16. Hammad, H. M., Chawla, M. S., Jawad, R., Alhuqail, A., Bakhat, H. F., Farhad, W., Khan, F., Mubeen, M., Shah, A. N., Liu, K., Harrison, M. T., Saud, S., & Fahad, S. (2022). Evaluating the Impact of Nitrogen Application on Growth and Productivity of Maize Under Control Conditions. Frontiers in Plant Science, 13, 885479. https://doi.org/10.3389/fpls.2022.885479 [Google Scholar]
  17. Haraga, L.-C., & Ion, V. (2023). The Effects of Side-Dressing Different Rates and Release Types of Nitrogen Fertilizer on Hybrid Seed Maize Production. Romanian Agricultural Research, 40, 429–438. https://doi.org/10.59665/rar4040 [Google Scholar]
  18. Jyosthna, N., Manjulatha, G., Mahesh, N., & Shakher, K. C. (2023). Impact of Tillage and Nitrogen Management Practices on Growth and Yield of Rabi Maize (Zea mays L.). International Journal of Environment and Climate Change, 13(10), 4194–4201. https://doi.org/10.9734/ijecc/2023/v13i103096 [Google Scholar]
  19. K.C, R., Bhatta, D., Lamsal, A., & Koirala, S. (2021). Effect of different doses of nitrogen on growth, yield and yield attributes of spring maize in Madichaur, Rolpa, Nepal. International Journal of Agricultural and Applied Sciences, 2(2), 120–125. https://doi.org/10.52804/ijaas2021.2218 [Google Scholar]
  20. Kapela, K., Sikorska, A., Niewęgłowski, M., Krasnodębska, E., Zarzecka, K., & Gugała, M. (2020). The Impact of Nitrogen Fertilization and the Use of Biostimulants on the Yield of Two Maize Varieties (Zea mays L.) Cultivated for Grain. Agronomy, 10(9), 1408. https://doi.org/10.3390/agronomy10091408 [Google Scholar]
  21. Karki, M., Panth, B. P., Subedi, P., GC, A., & Regmi, R. (2020). Effect of Different Doses of Nitrogen on Production of Spring Maize (Zea Mays) in Gulmi, Nepal. Sustainability in Food and Agriculture, 1(1), 01–05. https://doi.org/10.26480/sfna.01.2020.01.05 [Google Scholar]
  22. KC, G., Karki, T. B., Shrestha, J., & Achhami, B. B. (2015). Status and prospects of maize research in Nepal. Journal of Maize Research and Development, 1(1), 1–9. https://doi.org/10.3126/jmrd.v1i1.14239 [Google Scholar]
  23. Khaliq, T., Ahmad, A., Hussain, A., Ranjha, A. M., & Ali, M. A. (2008). Impact of Nitrogen Rates on Growth, Yield, and Radiation Use Efficiency of Maize Under Varying Environments. Pakistan Journal of Agricultural Science, 45(3), 1–7. [Google Scholar]
  24. Kumar, P., Scholar, M. S., Kumar, M., Kishor, K., & Kumar, R. (2018). Effect of nutrient management on yield and yield attributes of Maize (Zea mays L.) under different tillage practices. Journal of Pharmacognosy and Phytochemistry, 7(2), 807-810. [Google Scholar]
  25. Lakshmi, Y. S., Sreelatha, D., & Pradeep, T. (2020). Performance Evaluation of Sweetcorn with Different Levels of Irrigation and Nitrogen through Drip during Post Monsoon Season at Rajendranagar, Hyderabad, India. International Journal of Environment and Climate Change, 362–372. https://doi.org/10.9734/ijecc/2020/v10i1230311 [Google Scholar]
  26. Li, G., Zhao, B., Dong, S., Zhang, J., Liu, P., & Lu, W. (2020). Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize. Agricultural Water Management, 227, 105834. https://doi.org/10.1016/j.agwat.2019.105834 [Google Scholar]
  27. Li, Z., Wang, G. Y., Khan, K., Yang, L., Wang, Y., Chi, Y. X., & Zhou, X. (2023). Irrigation Combines with Nitrogen Application to Optimize Soil Carbon and Nitrogen, Increase Maize Yield, and Nitrogen Use Efficiency [Preprint]. https://doi.org/10.21203/rs.3.rs-3343343/v1 [Google Scholar]
  28. Mahmood, M., Maaz Maqsood, M., Hussain Awan, T., Tahir Mahmood, M., Maqsood, M., & Sarwar, R. (2001). Effect of different levels of nitrogen and intra-row plant spacing on yield and yield components of maize. African Journal of Agricultural Research, 38(2), 1-2. [Google Scholar]
  29. Marahatta, S. (2020). Nitrogen levels influence barrenness and sterility of maize varieties under different establishment methods during hot spring in western Terai of Nepal. Journal of Agriculture and Forestry University, 117–127. https://doi.org/10.3126/jafu.v4i1.47056 [Google Scholar]
  30. Modolo, L. V., da-Silva, C. J., Brandão, D. S., & Chaves, I. S. (2018). A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000s. Journal of Advanced Research, 13, 29–37. https://doi.org/10.1016/j.jare.2018.04.001 [Google Scholar]
  31. Nasar, J., Zhao, C. J., Khan, R., Gul, H., Gitari, H., Shao, Z., Abbas, G., Haider, I., Iqbal, Z., Ahmed, W., Rehman, R., Liang, Q. P., Zhou, X. B., & Yang, J. (2023). Maize-soybean intercropping at optimal N fertilization increases the N uptake, N yield and N use efficiency of maize crop by regulating the N assimilatory enzymes. Frontiers in Plant Science, 13, 1077948. https://doi.org/10.3389/fpls.2022.1077948 [Google Scholar]
  32. Nduwimana, D. (2020). Optimizing Nitrogen Use Efficiency and Maize Yield under Varying Fertilizer Rates in Kenya. International Journal of Bioresource Science, 7(2), 63-73. https://doi.org/10.30954/2347-9655.02.2020.4 [Google Scholar]
  33. Okab, S. I., & Abed, Z. A. (2022). Effect of Nitrogen Fertilizers on Growth and Yield Traits of Maize. Iraq Journal of Market Research and Consumer Protection, 14(2), 40–49. https://doi.org/10.28936/jmracpc14.2.2022.(6) [Google Scholar]
  34. Onasanya, R. O., Aiyelari, O. P., Onasanya, A., Oikeh, S., Nwilene, F. E., & Oyelakin, O. O. (2009). Growth and Yield Response of Maize (Zea mays L.) to Different Rates of Nitrogen and Phosphorus Fertilizers in Southern Nigeria. World Journal of Agricultural Sciences, 5(4), 400-407. [Google Scholar]
  35. Owais, M., Afridi, M. Z., Iqbal, W., Saleem, M. A., Noor, E., Salman, M., Khan, S. J., & Kalim, M. (2023). Vigor and viability of maize seeds as affected by nitrogen and potassium levels. Journal of Xi’an Shiyou University, Natural Science Edition, 19(05), 524-529. [Google Scholar]
  36. Raniro, H. R., Oliveira, F., Araujo, J. O., & Christoffoleti, P. J. (2023). Broadcast nitrogen application can negatively affect maize leaf area index and grain yield components under weed competition. Farming System, 1(3), 100047. https://doi.org/10.1016/j.farsys.2023.100047 [Google Scholar]
  37. Sabagh, A. EL, Majid, M. A., Islam, M. S., Hasan, M. K., Saddam, M. O., Barutcular, C., Ratnasekera, D., Abdelaal, Kh. A. A., & Islam, M. S. (2017). Influence of varying nitrogen levels on growth, yield and nitrogen use efficiency of hybrid maize (Zea mays). Journal of Experimental Biology and Agricultural Sciences, 5(2), 134–142. https://doi.org/10.18006/2017.5(2).134.142 [Google Scholar]
  38. Sandhu, N., Sethi, M., Kumar, A., Dang, D., Singh, J., & Chhuneja, P. (2021). Biochemical and Genetic Approaches Improving Nitrogen Use Efficiency in Cereal Crops: A Review. Frontiers in Plant Science, 12, 657629. https://doi.org/10.3389/fpls.2021.657629 [Google Scholar]
  39. Sharifi, R. S., & Namvar, A. (2016). Effects of time and rate of nitrogen application on phenology and some agronomical traits of maize (Zea mays L.). Biologija, 62(1), xx-xx. https://doi.org/10.6001/biologija.v62i1.3288 [Google Scholar]
  40. Sharma, L. K., Zaeen, A. A., Bali, S. K., & Dwyer, J. D. (2018). Improving Nitrogen and Phosphorus Efficiency for Optimal Plant Growth and Yield. In New Visions in Plant Science. InTech. https://doi.org/10.5772/intechopen.72214 [Google Scholar]
  41. Sharma, R., Adhikari, P., Shrestha, J., & Acharya, B. P. (2019). Response of maize (Zea mays L.) hybrids to different levels of nitrogen. Archives of Agriculture and Environmental Science, 4(3), 295–299. https://doi.org/10.26832/24566632.2019.040306 [Google Scholar]
  42. Shrestha, J. (2015, September 29). Growth and Productivity of Winter Maize (Zea mays L.) Under Different Levels of Nitrogen and Plant Population. Universal-Publishers. [Google Scholar]
  43. Shrestha, J., Chaudhary, A., & Pokhrel, D. (2018). Application of nitrogen fertilizer in maize in Southern Asia: a review. Peruvian Journal of Agronomy, 2(2), 22. https://doi.org/10.21704/pja.v2i2.1201 [Google Scholar]
  44. Shrestha, J., Nath Yadav, D., Prasad Amgain, L., & Prasad Sharma, J. (2018). Effects of Nitrogen and Plant Density on Maize (Zea mays L.) Phenology and Grain Yield. Current Agriculture Research Journal, 6(2), 175–182. https://doi.org/10.12944/carj.6.2.06 [Google Scholar]
  45. Singh, J., Partap, R., Singh, A., Kumar, N., & K. (2021). Effect of Nitrogen and Zinc on Growth and Yield of Maize (Zea mays L.). International Journal of Bio-Resource and Stress Management, 12(3), 179–185. https://doi.org/10.23910/1.2021.2212 [Google Scholar]
  46. Su, W., Ahmad, S., Ahmad, I., & Han, Q. (2020). Nitrogen fertilization affects maize grain yield through regulating nitrogen uptake, radiation and water use efficiency, photosynthesis and root distribution. PeerJ, 8, 10291. https://doi.org/10.7717/peerj.10291 [Google Scholar]
  47. Sution, Hatta, M., Arsjad, L. M. G., & Marssinai, R. (2021). The effect of nitrogen fertilizer on hybrid maize yields under the shade of coconut trees. E3S Web of Conferences, 306, 04011. https://doi.org/10.1051/e3sconf/202130604011 [Google Scholar]
  48. Szabó, A., Széles, A., Illés, Á., Bojtor, C., Mousavi, S. M. N., Radócz, L., & Nagy, J. (2022). Effect of Different Nitrogen Supply on Maize Emergence Dynamics, Evaluation of Yield Parameters of Different Hybrids in Long-Term Field Experiments. Agronomy, 12(2), 284. https://doi.org/10.3390/agronomy12020284 [Google Scholar]
  49. Tanko, M. U., & Momohjimoh, Y. (2022). Growth and yield performances of three maize cultivars (Zea mays L.) as influenced by time of N-fertilizer application. Journal of Innovative Agriculture, 9(2), 42–49. https://doi.org/10.37446/jinagri/rsa/9.2.2022.42-49 [Google Scholar]
  50. Timsina, K. P., Ghimire, Y. N., & Lamichhane, J. (2016). Maize production in mid hills of Nepal: from food to feed security. Journal of Maize Research and Development, 2(1), 20–29. https://doi.org/10.3126/jmrd.v2i1.16212 [Google Scholar]
  51. Tirfi, A. G. (2023). Effect of different nitrogen dose on growth and yield characteristics of hybrid maize (Zea mays L.) Varieties at Sundar bazar, Lamjung. Malaysian Journal of Sustainable Agriculture, 7(2), 65-71. [Google Scholar]
  52. Ullah, H., Tariq, M., Khan, M. O., Shah, T., Khan, N. A., Hussain, A., Bahadar, G., Ikramullah, M., & Muhammad, S. (2023). Influence of Nitrogen and Phosphorus on Yield of Maize. International Journal of Agricultural and Statistical Sciences, 19(1), 381. https://doi.org/10.59467/ijass.2023.19.381 [Google Scholar]
  53. Uzun, S., Özaktan, H., & Uzun, O. (2020). Effects of Different Nitrogen Dose and Sources as Top-Dressing on Yield and Silage Quality Attributes of Silage Maize. Anais Da Academia Brasileira de Ciências, 92(1), e20190030. https://doi.org/10.1590/0001-3765202020190030 [Google Scholar]
  54. Wang, L., Leghari, S. J., Wu, J., Wang, N., Pang, M., & Jin, L. (2023a). Interactive effects of biochar and chemical fertilizer on water and nitrogen dynamics, soil properties and maize yield under different irrigation methods. Frontiers in Plant Science, 14, 1230023. https://doi.org/10.3389/fpls.2023.1230023 [Google Scholar]
  55. Wang, L., Yu, B., Ji, J., Khan, I., Li, G., Rehman, A., Liu, D., & Li, S. (2023b). Assessing the impact of biochar and nitrogen application on yield, water-nitrogen use efficiency and quality of intercropped maize and soybean. Frontiers in Plant Science, 14, 1171547. https://doi.org/10.3389/fpls.2023.1171547 [Google Scholar]
  56. Wu, X., Cai, X., Li, Q., Ren, B., Bi, Y., Zhang, J., & Wang, D. (2022). Effects of nitrogen application rate on summer maize (Zea mays L.) yield and water–nitrogen use efficiency under micro–sprinkling irrigation in the Huang–Huai–Hai Plain of China. Archives of Agronomy and Soil Science, 68(14), 1915–1929. https://doi.org/10.1080/03650340.2021.1939867 [Google Scholar]
  57. Yadav, G., Rai, S., Adhikari, N., Yadav, S. P. S., & Bhattarai, S. (2022). Efficacy of different doses of NPK on growth and yield of rice bean (Vigna umbellata) in Khadbari, Sankhuwasabha, Nepal. Archives of Agriculture and Environmental Science, 7(4), 488–494. https://doi.org/10.26832/24566632.2022.070401 [Google Scholar]
  58. Yang, M., Ma, S., Mei, F., Wei, L., Wang, T., & Guan, X. (2021). Adjusting nitrogen application in accordance with soil water availability enhances yield and water use by regulating physiological traits of maize under drip fertigation. Phyton, 90(2), 417–435. https://doi.org/10.32604/phyton.2021.013175 [Google Scholar]
  59. Żarski, J., & Kuśmierek-Tomaszewska, R. (2023). Effects of Drip Irrigation and Top Dressing Nitrogen Fertigation on Maize Grain Yield in Central Poland. Agronomy, 13(2), 360. https://doi.org/10.3390/agronomy13020360 [Google Scholar]
  60. Zhao, J., Qi, Y., Yin, C., & Liu, X. (2023). Effects of Nitrogen Reduction at Different Growth Stages on Maize Water and Nitrogen Utilization under Shallow Buried Drip Fertigated Irrigation. Agronomy, 14(1), 63. https://doi.org/10.3390/agronomy14010063 [Google Scholar]
  61. Zhao, X., Wang, S., Wen, T., Xu, J., Huang, B., Yan, S., Gao, G., Zhao, Y., Li, H., Qiao, J., Yang, J., Wu, L., Wang, H., Liu, T., & Mu, X. (2023). On correlation between canopy vegetation and growth indexes of maize varieties with different nitrogen efficiencies. Open Life Sciences, 18(1), 20220566. https://doi.org/10.1515/biol-2022-0566 [Google Scholar]
  62. Zhou, H., Wang, Y., Wang, J., Liu, H., Li, H., & Guo, J. (2023). Effects of Long-Term Organic–Inorganic Nitrogen Application on Maize Yield and Nitrogen-Containing Gas Emission. Agronomy, 13(3), 848. https://doi.org/10.3390/agronomy13030848 [Google Scholar]

Similar Articles

1-10 of 13

You may also start an advanced similarity search for this article.