Impact of Metro Construction Activities on Air Quality: A Case Study of Delhi Region in North India

Mukesh Ruhela 1 , Faheem Ahamad 2 , Sweta Bhardwaj 3 , Gajendra Singh 4

1   Department of Environmental Engineering, Faculty of Engineering and Technology (FET), Swami Vivekanand Subharti University Meerut 250005, India
2   Limnology and Ecological Modelling Laboratory, Department of Zoology and Environmental Sciences, Gurukul Kangri (Deemed to be University), Haridwar 249404, India https://orcid.org/0000-0003-2324-4772
3   Department of Environmental Engineering, Faculty of Engineering and Technology (FET), Swami Vivekanand Subharti University Meerut 250005, India
4   Department of Environmental Engineering, Faculty of Engineering and Technology (FET), Swami Vivekanand Subharti University Meerut 250005, Indi

✉ Author responsible for correspondence: This information is protected, please see article PDF.

doi 10.59983/s2024020401

doi

Abstract

The current study investigated the concerns about the possible effects of metro infrastructure's fast growth on the environment, particularly air quality. This study investigates how the building of metro lines in Delhi, India, affects the quality of the air at the selected locations in south and west parts of union territory of Delhi. Different air pollutants, including particulate matter (PM10, PM2.5), gaseous pollutants like nitrogen dioxide (NO2), and sulfur dioxide (SO2), were monitored. Air Quality Index (AQI) was also applied to the obtained data to convert the intricate data into single digits. The findings revealed that the values of PM10 and PM2.5 were beyond the National Ambient Air Quality Standards (NAAQS) threshold at the proximity of metro work zones due to construction activity. Moreover, higher NO2 concentrations were noted because of construction machinery operations and vehicle emissions. The study emphasizes the necessity of efficient mitigation solutions, such as green barriers, emission control plans, and dust suppression tactics, to reduce the negative environmental effects of metro development on Delhi's air quality. The results of this study can help urban planners and politicians to create sustainable development plans for transportation infrastructure that protect the environment and public health.

Keywords:

air quality, air quality index, construction activities, megacity

Downloads

Download data is not yet available.

References

Ahamad, F., Bhutiani, R., & Ruhela, M. (2022). Environmental Quality Monitoring Using Environmental Quality Indices (EQI) Geographic Information System (GIS) and Remote Sensing: A Review. GIScience for the Sustainable Management of Water Resources, 331-348. http://doi.org/10.1201/9781003284512-21

Bhutiani, R., Kulkarni, D. B., Khanna, D. R., Tyagi, V., & Ahamad, F. (2021). Spatial and seasonal variations in particulate matter and gaseous pollutants around integrated industrial estate (IIE), SIDCUL, Haridwar: a case study. Environment, Development and Sustainability, 23, 15619-15638. http://doi.org/10.1007/s10668-021-01256-9

Chen, S., Guo, C., & Huang, X. (2018). Air pollution, student health, and school absences: evidence from China. Journal of Environmental Economics and Management, 92, 465–497. http://doi.org/10.1016/j.jeem.2018.10.002

Choo, G. H., Seo, J., Yoon, J., Kim, D. R., & Lee, D. W. (2020). Analysis of long-term (2005–2018) trends in tropospheric NO2 percentiles over Northeast Asia. Atmospheric Pollution Research, 11(8), 1429-1440. http://doi.org/10.1016/j.apr.2020.05.012

Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., & Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The lancet, 389(10082), 1907-1918. http://doi.org/10.1016/s0140-6736(17)30505-6

Cohen, G., Levy, I., Yuval, Kark, J. D., Levin, N., Witberg, G., & Gerber, Y. (2018). Chronic exposure to traffic-related air pollution and cancer incidence among 10,000 patients undergoing percutaneous coronary interventions: A historical prospective study. European Journal of Preventive Cardiology, 25(6), 659-670. http://doi.org/10.1177/2047487318760892

Cusworth, D. H., Mickley, L. J., Sulprizio, M. P., Liu, T., Marlier, M. E., DeFries, R. S., & Gupta, P. (2018). Quantifying the influence of agricultural fires in northwest India on urban air pollution in Delhi, India. Environmental Research Letters, 13(4), 044018. http://doi.org/10.1088/1748-9326/aab303

Ghude, S. D., Chate, D. M., Jena, C., Beig, G., Kumar, R., Barth, M. C., & Pithani, P. (2016). Premature mortality in India due to PM2. 5 and ozone exposure. Geophysical Research Letters, 43(9), 4650-4658. http://doi.org/10.1002/2016gl068949

Hajat, A., Diez-Roux, A. V., Adar, S. D., Auchincloss, A. H., Lovasi, G. S., O’Neill, M. S., & Kaufman, J. D. (2013). Air pollution and individual and neighborhood socioeconomic status: evidence from the Multi-Ethnic Study of Atherosclerosis (MESA). Environmental health perspectives, 121(11-12), 1325-1333. http://doi.org/10.1289/ehp.1206337

Hama, S. M., Kumar, P., Harrison, R. M., Bloss, W. J., Khare, M., Mishra, S., & Sharma, C. (2020). Four-year assessment of ambient particulate matter and trace gases in the Delhi-NCR region of India. Sustainable Cities and Society, 54, 102003. http://doi.org/10.1016/j.scs.2019.102003

J. H., & Pandis, S. N. (2016). Atmospheric Chemistry and Physics: from air pollution to climate change, second ed. John Wiley & Sons.

Kendrova, L., Takac, P., Kubincova, A., Mikulakova, W., & Nechvatal, P. (2016). Effect of spa treatment and speleotherapy in the treatment of chronic obstructive pulmonary disease – a pilot study. Clinical Social Work and Health Intervention, 7(2), 7–15. http://doi.org/10.22359/cswhi_7_2_01

Khajeamiri, Y., Sharifi, S., Moradpour, N., & Khajeamiri, A. (2021). A review on the effect of air pollution and exposure to PM, NO2, O3, SO2, CO and heavy metals on viral respiratory infections. Journal of Air Pollution and Health, 5(4), 6445. http://doi.org/10.18502/japh.v5i4.6445

Kumar, P., Khare, M., Harrison, R., Bloss, W., Lewis, A., Coe, H., & Morawska, L. (2015). New directions: air pollution challenges for developing megacities like Delhi. Atmospheric Environment, 122, 657-661. http://doi.org/10.1016/j.atmosenv.2015.10.032

Meo, S. A., Salih, M. A., Alkhalifah, J. M., Alsomali, A. H., & Almushawah, A. A. (2024). Environmental pollutants particulate matter (PM2. 5, PM10), Carbon Monoxide (CO), Nitrogen dioxide (NO2), Sulfur dioxide (SO2), and Ozone (O3) impact on lung functions. Journal of King Saud University-Science, 103280. http://doi.org/10.1016/j.jksus.2024.103280

Pope III, C. A., Cropper, M., Coggins, J., & Cohen, A. (2015). Health benefits of air pollution abatement policy: Role of the shape of the concentration–response function. Journal of the Air & Waste Management Association, 65(5), 516-522. http://doi.org/10.1080/10962247.2014.993004

Rao, M. N., & Rao, H. V. N. (1986). Air pollution, TATA Mc GrawHill publishing company, New Delhi.

Ruhela, M., Maheshwari, V., Ahamad, F., & Kamboj, V. (2022a). Air quality assessment of Jaipur city Rajasthan after the COVID-19 lockdown. Spatial Information Research, 30(5), 597-605. http://doi.org/10.1007/s41324-022-00456-3

Ruhela, M., Sharma, K., Bhutiani, R., Chandniha, S. K., Kumar, V., Tyagi, K., & Tyagi, I. (2022b). GIS-based impact assessment and spatial distribution of air and water pollutants in mining area. Environmental Science and Pollution Research, 1-15. http://doi.org/10.1007/s11356-021-18009-w

Saxena, A. and Shekhawat, S. (2017). Ambient Air Quality Classification by Grey Wolf Optimizer Based Support Vector Machine. Journal of Environmental and Public Health, 3131083, 12. http://doi.org/10.1155/2017/3131083

Saxena, M., Sharma, A., Sen, A., Saxena, P., Mandal, T. K., Sharma, S. K., & Sharma, C. (2017). Water soluble inorganic species of PM10 and PM2. 5 at an urban site of Delhi, India: seasonal variability and sources. Atmospheric Research, 184, 112-125. http://doi.org/10.1016/j.atmosres.2016.10.005

Sharma, A. K., Baliyan, P., & Kumar, P. (2018). Air pollution and public health: the challenges for Delhi, India. Reviews on Environmental Health, 33(1), 77-86. http://doi.org/10.1515/reveh-2017-0032

Soni, M., Payraa, S., & Verma, S. (2018). Particulate matter estimation over a semi arid region Jaipur, India using satellite AOD and meteorological parameters, Atmospheric Pollution Research, 3, 1-10. http://doi.org/10.1016/j.apr.2018.03.001

Talukdar, S., Tripathi, S. N., Lalchandani, V., Rupakheti, M., Bhowmik, H. S., Shukla, A. K., & Sahu, L. (2021). Air pollution in new delhi during late winter: An overview of a group of campaign studies focusing on composition and sources. Atmosphere, 12(11), 1432. http://dx.doi.org/10.3390/atmos12111432

Tyagi, S., Tiwari, S., Mishra, A., Hopke, P. K., Attri, S. D., Srivastava, A. K., & Bisht, D. S. (2016). Spatial variability of concentrations of gaseous pollutants across the National Capital Region of Delhi, India. Atmospheric Pollution Research, 7(5), 808-816. http://doi.org/10.1016/j.apr.2016.04.008

USEPA, (2008). Integrated Science Assessment for Oxides of Nitrogen-Health Criteria. U.S. Environmental Protection Agency, 2008.

Wang, C., Sun, Z., & Ye, Z. (2020a). On-road bus emission comparison for diverse locations and fuel types in real-world operation conditions. Sustainability, 12, 1798. http://doi.org/10.3390/su12051798

Wang, Y., Liu, P., Xu, C., Peng, C., & Wu, J. (2020b). A deep learning approach to real-time CO concentration prediction at signalized intersection. Atmospheric Pollution Research, 11(8), 1370-1378. http://doi.org/10.1016/j.apr.2020.05.007

Wang, Z., Zhong, S., Peng, Z. R., & Cai, M. (2018). Fine-scale variations in PM2. 5 and black carbon concentrations and corresponding influential factors at an urban road intersection. Building and Environment, 141, 215-225. http://doi.org/10.1016/j.buildenv.2018.04.042

WHO (World Health Organization), (2003). Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide, Bonn, Germany.

World Health Organization (WHO). Air Quality, Energy, and Health. Available online: https://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/health-impacts/types-of-pollutants (accessed 12 February 2024).

Xu, X., Tong, T., Zhang, W., & Meng, L. (2020). Fine-grained prediction of PM2. 5 concentration based on multisource data and deep learning. Atmospheric Pollution Research, 11(10), 1728-1737. http://doi.org/10.1016/j.apr.2020.06.032

Downloads

Published

17-12-2024

How to Cite

Ruhela, M., Ahamad, F., Bhardwaj, S., & Singh, G. (2024). Impact of Metro Construction Activities on Air Quality: A Case Study of Delhi Region in North India. AgroEnvironmental Sustainability, 2(4), 151–158. https://doi.org/10.59983/s2024020401