Abstract
The current study investigated the concerns about the possible effects of metro infrastructure's fast growth on the environment, particularly air quality. This study investigates how the building of metro lines in Delhi, India, affects the quality of the air at the selected locations in south and west parts of union territory of Delhi. Different air pollutants, including particulate matter (PM10, PM2.5), gaseous pollutants like nitrogen dioxide (NO2), and sulfur dioxide (SO2), were monitored. Air Quality Index (AQI) was also applied to the obtained data to convert the intricate data into single digits. The findings revealed that the values of PM10 and PM2.5 were beyond the National Ambient Air Quality Standards (NAAQS) threshold at the proximity of metro work zones due to construction activity. Moreover, higher NO2 concentrations were noted because of construction machinery operations and vehicle emissions. The study emphasizes the necessity of efficient mitigation solutions, such as green barriers, emission control plans, and dust suppression tactics, to reduce the negative environmental effects of metro development on Delhi's air quality. The results of this study can help urban planners and politicians to create sustainable development plans for transportation infrastructure that protect the environment and public health.
Keywords
References
- Ahamad, F., Bhutiani, R., & Ruhela, M. (2022). Environmental Quality Monitoring Using Environmental Quality Indices (EQI) Geographic Information System (GIS) and Remote Sensing: A Review. GIScience for the Sustainable Management of Water Resources, 331-348. http://doi.org/10.1201/9781003284512-21 [Google Scholar]
- Bhutiani, R., Kulkarni, D. B., Khanna, D. R., Tyagi, V., & Ahamad, F. (2021). Spatial and seasonal variations in particulate matter and gaseous pollutants around integrated industrial estate (IIE), SIDCUL, Haridwar: a case study. Environment, Development and Sustainability, 23, 15619-15638. http://doi.org/10.1007/s10668-021-01256-9 [Google Scholar]
- Chen, S., Guo, C., & Huang, X. (2018). Air pollution, student health, and school absences: evidence from China. Journal of Environmental Economics and Management, 92, 465–497. http://doi.org/10.1016/j.jeem.2018.10.002 [Google Scholar]
- Choo, G. H., Seo, J., Yoon, J., Kim, D. R., & Lee, D. W. (2020). Analysis of long-term (2005–2018) trends in tropospheric NO2 percentiles over Northeast Asia. Atmospheric Pollution Research, 11(8), 1429-1440. http://doi.org/10.1016/j.apr.2020.05.012 [Google Scholar]
- Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., & Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The lancet, 389(10082), 1907-1918. http://doi.org/10.1016/s0140-6736(17)30505-6 [Google Scholar]
- Cohen, G., Levy, I., Yuval, Kark, J. D., Levin, N., Witberg, G., & Gerber, Y. (2018). Chronic exposure to traffic-related air pollution and cancer incidence among 10,000 patients undergoing percutaneous coronary interventions: A historical prospective study. European Journal of Preventive Cardiology, 25(6), 659-670. http://doi.org/10.1177/2047487318760892 [Google Scholar]
- Cusworth, D. H., Mickley, L. J., Sulprizio, M. P., Liu, T., Marlier, M. E., DeFries, R. S., & Gupta, P. (2018). Quantifying the influence of agricultural fires in northwest India on urban air pollution in Delhi, India. Environmental Research Letters, 13(4), 044018. http://doi.org/10.1088/1748-9326/aab303 [Google Scholar]
- Ghude, S. D., Chate, D. M., Jena, C., Beig, G., Kumar, R., Barth, M. C., & Pithani, P. (2016). Premature mortality in India due to PM2. 5 and ozone exposure. Geophysical Research Letters, 43(9), 4650-4658. http://doi.org/10.1002/2016gl068949 [Google Scholar]
- Hajat, A., Diez-Roux, A. V., Adar, S. D., Auchincloss, A. H., Lovasi, G. S., O’Neill, M. S., & Kaufman, J. D. (2013). Air pollution and individual and neighborhood socioeconomic status: evidence from the Multi-Ethnic Study of Atherosclerosis (MESA). Environmental health perspectives, 121(11-12), 1325-1333. http://doi.org/10.1289/ehp.1206337 [Google Scholar]
- Hama, S. M., Kumar, P., Harrison, R. M., Bloss, W. J., Khare, M., Mishra, S., & Sharma, C. (2020). Four-year assessment of ambient particulate matter and trace gases in the Delhi-NCR region of India. Sustainable Cities and Society, 54, 102003. http://doi.org/10.1016/j.scs.2019.102003 [Google Scholar]
- J. H., & Pandis, S. N. (2016). Atmospheric Chemistry and Physics: from air pollution to climate change, second ed. John Wiley & Sons. [Google Scholar]
- Kendrova, L., Takac, P., Kubincova, A., Mikulakova, W., & Nechvatal, P. (2016). Effect of spa treatment and speleotherapy in the treatment of chronic obstructive pulmonary disease – a pilot study. Clinical Social Work and Health Intervention, 7(2), 7–15. http://doi.org/10.22359/cswhi_7_2_01 [Google Scholar]
- Khajeamiri, Y., Sharifi, S., Moradpour, N., & Khajeamiri, A. (2021). A review on the effect of air pollution and exposure to PM, NO2, O3, SO2, CO and heavy metals on viral respiratory infections. Journal of Air Pollution and Health, 5(4), 6445. http://doi.org/10.18502/japh.v5i4.6445 [Google Scholar]
- Kumar, P., Khare, M., Harrison, R., Bloss, W., Lewis, A., Coe, H., & Morawska, L. (2015). New directions: air pollution challenges for developing megacities like Delhi. Atmospheric Environment, 122, 657-661. http://doi.org/10.1016/j.atmosenv.2015.10.032 [Google Scholar]
- Meo, S. A., Salih, M. A., Alkhalifah, J. M., Alsomali, A. H., & Almushawah, A. A. (2024). Environmental pollutants particulate matter (PM2. 5, PM10), Carbon Monoxide (CO), Nitrogen dioxide (NO2), Sulfur dioxide (SO2), and Ozone (O3) impact on lung functions. Journal of King Saud University-Science, 103280. http://doi.org/10.1016/j.jksus.2024.103280 [Google Scholar]
- Pope III, C. A., Cropper, M., Coggins, J., & Cohen, A. (2015). Health benefits of air pollution abatement policy: Role of the shape of the concentration–response function. Journal of the Air & Waste Management Association, 65(5), 516-522. http://doi.org/10.1080/10962247.2014.993004 [Google Scholar]
- Rao, M. N., & Rao, H. V. N. (1986). Air pollution, TATA Mc GrawHill publishing company, New Delhi. [Google Scholar]
- Ruhela, M., Maheshwari, V., Ahamad, F., & Kamboj, V. (2022a). Air quality assessment of Jaipur city Rajasthan after the COVID-19 lockdown. Spatial Information Research, 30(5), 597-605. http://doi.org/10.1007/s41324-022-00456-3 [Google Scholar]
- Ruhela, M., Sharma, K., Bhutiani, R., Chandniha, S. K., Kumar, V., Tyagi, K., & Tyagi, I. (2022b). GIS-based impact assessment and spatial distribution of air and water pollutants in mining area. Environmental Science and Pollution Research, 1-15. http://doi.org/10.1007/s11356-021-18009-w [Google Scholar]
- Saxena, A. and Shekhawat, S. (2017). Ambient Air Quality Classification by Grey Wolf Optimizer Based Support Vector Machine. Journal of Environmental and Public Health, 3131083, 12. http://doi.org/10.1155/2017/3131083 [Google Scholar]
- Saxena, M., Sharma, A., Sen, A., Saxena, P., Mandal, T. K., Sharma, S. K., & Sharma, C. (2017). Water soluble inorganic species of PM10 and PM2. 5 at an urban site of Delhi, India: seasonal variability and sources. Atmospheric Research, 184, 112-125. http://doi.org/10.1016/j.atmosres.2016.10.005 [Google Scholar]
- Sharma, A. K., Baliyan, P., & Kumar, P. (2018). Air pollution and public health: the challenges for Delhi, India. Reviews on Environmental Health, 33(1), 77-86. http://doi.org/10.1515/reveh-2017-0032 [Google Scholar]
- Soni, M., Payraa, S., & Verma, S. (2018). Particulate matter estimation over a semi arid region Jaipur, India using satellite AOD and meteorological parameters, Atmospheric Pollution Research, 3, 1-10. http://doi.org/10.1016/j.apr.2018.03.001 [Google Scholar]
- Talukdar, S., Tripathi, S. N., Lalchandani, V., Rupakheti, M., Bhowmik, H. S., Shukla, A. K., & Sahu, L. (2021). Air pollution in new delhi during late winter: An overview of a group of campaign studies focusing on composition and sources. Atmosphere, 12(11), 1432. http://dx.doi.org/10.3390/atmos12111432 [Google Scholar]
- Tyagi, S., Tiwari, S., Mishra, A., Hopke, P. K., Attri, S. D., Srivastava, A. K., & Bisht, D. S. (2016). Spatial variability of concentrations of gaseous pollutants across the National Capital Region of Delhi, India. Atmospheric Pollution Research, 7(5), 808-816. http://doi.org/10.1016/j.apr.2016.04.008 [Google Scholar]
- USEPA, (2008). Integrated Science Assessment for Oxides of Nitrogen-Health Criteria. U.S. Environmental Protection Agency, 2008. [Google Scholar]
- Wang, C., Sun, Z., & Ye, Z. (2020a). On-road bus emission comparison for diverse locations and fuel types in real-world operation conditions. Sustainability, 12, 1798. http://doi.org/10.3390/su12051798 [Google Scholar]
- Wang, Y., Liu, P., Xu, C., Peng, C., & Wu, J. (2020b). A deep learning approach to real-time CO concentration prediction at signalized intersection. Atmospheric Pollution Research, 11(8), 1370-1378. http://doi.org/10.1016/j.apr.2020.05.007 [Google Scholar]
- Wang, Z., Zhong, S., Peng, Z. R., & Cai, M. (2018). Fine-scale variations in PM2. 5 and black carbon concentrations and corresponding influential factors at an urban road intersection. Building and Environment, 141, 215-225. http://doi.org/10.1016/j.buildenv.2018.04.042 [Google Scholar]
- WHO (World Health Organization), (2003). Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide, Bonn, Germany. [Google Scholar]
- World Health Organization (WHO). Air Quality, Energy, and Health. Available online: https://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/health-impacts/types-of-pollutants (accessed 12 February 2024). [Google Scholar]
- Xu, X., Tong, T., Zhang, W., & Meng, L. (2020). Fine-grained prediction of PM2. 5 concentration based on multisource data and deep learning. Atmospheric Pollution Research, 11(10), 1728-1737. http://doi.org/10.1016/j.apr.2020.06.032 [Google Scholar]

