Characterization of Biochar Produced from Locally Available Agricultural Waste Resources for Soil Enhancement in Western Kenya

Open Access
Download PDF
AgroEnvironmental Sustainability
Collins Otieno Majengo , Jonathan Mutonyi , Caroline Agamala Kundu , Francis Namasake Muyekho

Abstract

Valorization of agricultural waste offers a circular pathway to mitigate the intertwined crises of climate change, pollution, and biodiversity loss. Slow pyrolysis provides an effective route for transforming biomass into biochar, a porous carbonaceous material that can condition degraded soils. We quantified the physicochemical attributes of biochar produced from three contrasting residues that dominate western Kenya’s agroecosystems: coffee husk (CH), sugarcane bagasse (SB), and wood sawdust (WS). Each feedstock was air-dried for 72 h, pyrolyzed in a sealed metal kiln at 350 °C for 60 min, and cooled under an inert atmosphere. Yields averaged 37 % for CH, 32 % for SB, and 28 % for WS. Resultant biochars displayed high pH (8.4–9.2), surface area (145–275 m² g⁻¹), and cation-exchange capacity up to 92 cmol c kg⁻¹, indicating liming and nutrient-retention potential. Elemental analysis revealed increasing aromaticity (H/C < 0.35) and carbon stability with decreasing O/C ratios. Bulk density followed the order WS > SB > CH, whereas porosity exhibited the opposite pattern, reflecting structural differences in the biomasses. The correlation of ash alkalinity with calcium and magnesium contents suggested that feedstock mineralogy largely governs biochar buffering capacity. On the basis of these metrics, CH biochar emerged as the most suitable amendment for acidic Ferralsols, whereas WS biochar may serve better in sandy Arenosols requiring structural improvement. The findings supply evidence that can guide county-level policies seeking to couple waste reduction with soil fertility restoration through biochar adoption within smallholder systems.

Keywords

agricultural waste biochar local resources soil enhancement valorization

References

  1. Addai, A., Abbey, A. N. A., Frimpong, K. A., Odoi-Yorke, F., Ampofo, E. A., & Darko, R. O. (2025). A review of biochar's sustainability in climate-smart agriculture: Recent advances, emerging trends, and future directions. European Journal of Agronomy, 169, 127690. https://doi.org/10.1016/j.eja.2025.127690 [Google Scholar]
  2. Askeland, M., Clarke, B., & Paz-Ferreiro, J. (2019). Comparative characterization of biochars produced at three selected pyrolysis temperatures from common woody and herbaceous waste streams. PeerJ, 7, e6784. https://doi.org/10.7717/peerj.6784 [Google Scholar]
  3. Benchaar, C., Hassanat, F., & Côrtes, C. (2023). Assessment of the effects of commercial or locally engineered biochars produced from different biomass sources and differing in their physical and chemical properties on rumen fermentation and methane production in vitro. Animals, 13(20), 3280. https://doi.org/10.3390/ani13203280 [Google Scholar]
  4. Day, D., Evans, R. J., Lee, J. W., & Reicosky, D. (2005). Economical CO₂, SOₓ and NOₓ capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy, 30(14), 2558–2579. [Google Scholar]
  5. Dos Santos, P. H., Neves, S. M., Sant’Anna, D. O., De Oliveira, C. H., & Carvalho, H. D. (2019) The Analytic Hierarchy Process Supporting Decision Making for Sustainable Development: An Overview of Applications. Journal of Cleaner Production, 212, 119-138. https://doi.org/10.1016/j.jclepro.2018.11.270 [Google Scholar]
  6. Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644–653. [Google Scholar]
  7. Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51, 2061–2069. [Google Scholar]
  8. Graber, E. R., Tsechansky, L., Gerstl, Z., & Lew, B. (2011). High surface area biochar negatively impacts herbicide efficacy. Plant and Soil, 338, 283–297. https://doi.org/10.1007/s11104-011-1012-7 [Google Scholar]
  9. Gwenzi, W., & Munondo, R. (2008). Long-term impacts of pasture irrigation with treated sewage effluent on nutrient status of a sandy soil. Nutrient Cycling in Agroecosystems, 82, 197–207. [Google Scholar]
  10. Hass, A., Gonzalez, J. M., Lima, I. M., Godwin, H. W., Halvorson, J. J., & Boyer, D. G. (2012). Chicken manure biochar as liming and nutrient source for acid Appalachian soil. Journal of Environmental Quality, 41, 1096–1106. https://doi.org/10.2134/jeq2011.0124 [Google Scholar]
  11. Jaetzold, R., Hornetz, B., Shisanya, C. A., & Schmidt, H. (2012). Management handbook of Kenya. Vol. I–IV (Western, Central, Eastern, Nyanza, Southern Rift Valley, Northern Rift Valley, Coast). Farm Management Branch, Ministry of Agriculture, Nairobi, Kenya. [Google Scholar]
  12. Joseph, S., Peacocke, C., Lehmann, J., & Munroe, P. (2012). Developing a biochar classification and test methods. In Biochar for environmental management (pp. 139-158). Routledge. [Google Scholar]
  13. Kätterer, T., Roobroeck, D., Andrén, O., Kimutai, G., Karltun, E., Kirchmann, H., Nyberg, G., Vanlauwe, B., & Röing de Nowina, K. (2019). Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crops Research, 232, 18–26. [Google Scholar]
  14. Kenya National Bureau of Statistics (KNBS). (2019). Distribution of the population by socio-economic characteristics. Nairobi, Kenya. [Google Scholar]
  15. Kimetu, J. M., Lehmann, J., Ngoze, S. O., Mugendi, D. N., Kinyangi, J. M., Riha, S., Verchot, L., Recha, J. W., & Pell, A. N. (2008). Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems, 11, 726–739. [Google Scholar]
  16. Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158, 436–442. [Google Scholar]
  17. Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota: A review. Soil Biology and Biochemistry, 43, 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022 [Google Scholar]
  18. Liang, B., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, J., Skjemstad, J. O., Thies, J., Luizão, F. J., Petersen, J., & Lehmann, J. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719–1730. [Google Scholar]
  19. Ministry of Agriculture, Livestock, Fisheries and Cooperatives (MoALFC). (2021). Climate risk profile for Bungoma County. Nairobi, Kenya. [Google Scholar]
  20. Mukherjee, A., & Lal, R. (2013). Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions. Agronomy, 3, 313-339. https://doi.org/10.3390/agronomy3020313 [Google Scholar]
  21. Rockström, J., Kaumbutho, P., Mwalley, J., Nzabi, A. W., Temesgen, M., Mawenya, L., Barron, J., Mutua, J., & Damgaard-Larsen, S. (2009). Conservation farming strategies in East and Southern Africa: Yields and rainwater productivity from on-farm action research. Soil and Tillage Research, 103, 23–32. [Google Scholar]
  22. Sadaka, S., Sharara, M. A., Ashworth, A., Keyser, P., Allen, F., & Wright, A. (2014). Characterization of biochar from switchgrass carbonization. Energies, 7(2), 548–567. https://doi.org/10.3390/en7020548 [Google Scholar]
  23. Torres-Rojas, D., Lehmann, J., Hobbs, P., Joseph, S., & Neufeldt, H. (2011). Biomass availability, energy consumption and biochar production in rural households of Western Kenya. Biomass and Bioenergy, 35(8), 3537–3546. [Google Scholar]
  24. Van Zwieten, L., Kimber, S., Morris, S. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil, 327, 235–246. [Google Scholar]
  25. Verheijen, F., Jeffery, S., Bastos, A. C., van der Velde, M., & Diafas, I. (2010). Biochar application to soils: A critical scientific review of effects on soil properties, processes and functions (EUR 24099 EN–2010). European Commission, Joint Research Centre, Institute for Environment and Sustainability. [Google Scholar]
  26. Zafeer, M. K., Menezes, R. A., Hillemane, V., & Subrahmanya, B. K. (2023). Sugarcane bagasse-based biochar and its potential applications: A review. Emergent Materials, 7(2). https://doi.org/10.1007/s42247-023-00603-y [Google Scholar]
  27. Zhang, P., Sheng, G. Y., Feng, Y. H., & Miller, D. M. (2006). Predominance of char sorption over substrate concentration and soil pH in influencing biodegradation of benzonitrile. Biodegradation, 17(1), 1–8. [Google Scholar]

Similar Articles

1-10 of 62

You may also start an advanced similarity search for this article.