Development of a Solar-Powered Integrated Wireless Soil Moisture Meter

Open Access
Download PDF
AgroEnvironmental Sustainability
Nathaniel A. Nwogwu , Gabriel E. Chukwurah , Olivia M. Ngerem , Oluwaseyi A. Ajala , Omobolaji T. Opafola , Fidelis O. Ajibade , Ngozi Anthony A. Okereke

Abstract

In this study, we developed a solar-powered integrated wireless soil moisture meter that can easily measure in situ soil moisture, soil temperature, and hydrogen potential (pH) using nature's solar energy. Knowledge of soil moisture content and other relevant soil-specific parameters is essential for irrigation scheduling, fertilizer selection, and fertigation. Also, considering that the electricity supply in some developing countries is either erratic or unavailable, this research aims to bridge the gap in electricity availability and ease of measurement and integrate more soil-specific parameters. The sensor system was developed using the frequency domain (FD) technique for fast response. These parameters were measured sequentially at an interval of about 5 seconds, with the readings displayed simultaneously on a Bluetooth-connected device (e.g., an Android phone) located about 50 meters away from the developed system. The different sensors are classified and adequately labeled to identify the parameter to be measured. The performance evaluation carried out indicated a reasonably functioning device that is cost-effective. The results obtained showed that the system was resourceful as it not only measured the parameters of interest (soil moisture, temperature, and pH) but also gave a prompt response in measurement and transmission. Overall, the developed wireless soil moisture meter provides instantaneous data on pH, moisture, and temperature circulation across soil layers. The system is promising as it can be integrated into large-scale automated irrigation systems for agricultural lands.

Keywords

Arduino microcontroller moisture content soil temperature solar powered

References

  1. Abrudan, T. E., Kypris, O., Trigoni, N., & Markham, A., (2016). Impact of rocks and minerals on underground magneto-inductive communication and localization. IEEE Access 4, 3999–4010. https://doi.org/:10.1109/ACCESS.2016.2597641 [Google Scholar]
  2. Ajibade, T. F., Nwogwu, N. A., Ajibade, F. O., Adelodun, B., Idowu, T. E., Ojo, A. O., Iji, J. O., Olajire, O. O., & Akinmusere, O. K. (2020). Potential dam sites selection using integrated techniques of remote sensing and GIS in Imo State, Southeastern, Nigeria. Sustainable Water Resources Management. 6, 57. https://doi.org/10.1007/s40899-020-00416-5 [Google Scholar]
  3. Akkas, M. A. (2017). Channel modeling of wireless sensor networks in oil. Wireless Personal Communications, 1–19. https://doi.org/10.1007/s11277-017-4083-9 [Google Scholar]
  4. Akyildiz, I. F., & Stuntebeck, E. P. (2006). Wireless underground sensor networks: research challenges. Ad Hoc Networks, 4(6), 669–686. https://doi.org/10.1016/j.adhoc.2006.04.003 [Google Scholar]
  5. Akyildiz, I. F., Sun, Z., & Vuran, M. C. (2009). Signal propagation techniques for wireless underground communication networks. Journal of Physics Communications, 2(3), 167–183. https://doi.org/10.1016/j.phycom.2009.03.004 [Google Scholar]
  6. Al-Asadi, R., & Mouazen, A. (2014). Combining frequency domain reflectometry and visible and near infraredspectroscopy for assessment of soil bulk density. Soil and Tillage Research, 135, 60–70. https://doi.org/10.1016/j.still.2013.09.002 [Google Scholar]
  7. Anderson, N. P., Hart, J. M., Horneck, D. A., Sullivan, D. M., Christensen, N. W., & Pirelli G. J. (2010). Evaluating Soil Nutrient and pH by Depth; in Situations of Limited or No Tillage in Western Oregon. Oregon State University Extension Service: EM9014, pp. 1-6. Available at: https://catalog.extension.oregonstate.edu/em9014/html (accessed on 10 May 2023). [Google Scholar]
  8. Aqeel-ur-Rehman, Abbasi, A. Z., Islam, N., & Shaikh Z. A. (2014). A review of wireless sensors and networks' applications in agriculture. Computer Standards & Interfaces, 36, 263–270. https://doi.org/10.1016/j.csi.2011.03.004 [Google Scholar]
  9. Baghdadi, N., Dubois-Fernandez, P., Dupuis, X., & Zribi, M. (2014). Sensitivity of main polarimetric parameters of multifrequency polarimetric SAR data to soil moisture and surface roughness over bare agricultural soils. IEEE Geoscience and Remote Sensing Letters, 10(4), 731–735. https://doi.org/10.1109/LGRS.2012.2220333 [Google Scholar]
  10. Banwart, S., Bernasconi S. M., Bloem, J., Blum, W., Brandao, M., Brantley, S., Chabaux, F., Duffy, C., Kram, P., Lair, G., Lundin, L., Nikolaidis, N., Novak, M., Panagos, P., Ragnarsdottir, K. V., Reynolds, B., Rousseva, S., de Ruiter, P., van Gaans, P., van Riemsdijk, W., White, T., & Zhang B. (2011). Soil processes and functions in critical zone observatories: hypotheses and experimental design. Vadose Zone Journal, 10, 974-987. http://dx.doi.org/10.2136/vzj2010.0136 [Google Scholar]
  11. Bogena, H. R., Herbst, M., Huisman, J. A., Rosenbaum, U., Weuthen, A., & Vereecken, H. (2010). Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone Journal, 9(4), 1002–1013. https://doi.org/10.2136/vzj2009.0173 [Google Scholar]
  12. Dong, X., Vuran, C., & Irmak, S. (2013). Autonomous precision agriculture through integration of wireless sensor networks with center pivot irrigation systems. Ad Hoc Networks, 11, 1975–1987. https://doi.org/10.1016/j.adhoc.2012.06.012 [Google Scholar]
  13. Emma-Okafor, L. C., Obiefuna, J. C., Ibeawuchi, I. I., Onweremadu, E. U., Okoli, N. A., & Okere, S. E. (2016). Soil fertility maintenance in late season plaintain production using poultry manure and time of planting in Owerri, southeastern Nigeria. Futo Journal Series (FUTOJNLS), 2(1), 9-16. [Google Scholar]
  14. Entekhabi, D., Rodriguez-Iturbe, I., & Castelli, F. (1996). Mutual interaction of soil moisture state and atmospheric processes. Journal of Hydrology, 184(1), 3–17. http://dx.doi.org/10.1016/0022-1694(95)02965-6 [Google Scholar]
  15. Falana, O. B., & Durodola, O. I. (2022). Multimodal remote sensing and machine learning for precision agriculture: A review. Journal of Engineering Research and Reports. 23(8): 30–34. https://doi.org/10.9734/jerr/2022/v23i8740 [Google Scholar]
  16. Goumopoulos, C., O'Flynn, B., & Kameas, A. (2014). Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support. Computers and Electronics in Agriculture, 105, 20–33. https://doi.org/10.1016/j.compag.2014.03.012 [Google Scholar]
  17. Guo, H., & Sun, Z. (2014). Channel and energy modeling for self-contained wireless sensor networks in oil reservoirs. IEEE Transactions on Wireless Communications, 13(4), 2258–2269. https://doi.org/10.1109/TWC.2013.031314.130835 [Google Scholar]
  18. Janik, G., Wolski, K., Daniel, A., Albert, M., Skierucha, W., Wililczek, A., Szyszkowski, P., & Walczak, A. (2015). TDR Technique for Estimating the Intensity of Evapotranspiration of Turfgrasses. The Scientific World Journal, 2015: 626545, https://doi.org/10.1155/2015/626545 [Google Scholar]
  19. Jaria, F., & Madramootoo, C.A. (2012). Thresholds for irrigation management of processing tomatoes using soil moisture sensors in Southwestern Ontario. Transactions of the ASABE, 56(1), 155–166. [Google Scholar]
  20. Jiang, M., Lv, M., Deng, Z., & Zhai, G. (2017). A wireless soil moisture sensor powered by solar energy. PLoS One, 12(9), e0184125. https://doi.org/10.1371/journal.pone.0184125 [Google Scholar]
  21. Koster, R. D., Mahanama, S. P., Livneh, B., Lettenmaier, D. P., & Reichle, R. H. (2010). Skill in stream flow forecasts derived from large-scale estimates of soil moisture and snow. Nature Geoscience, 3(9), 613–616. http://doi.org/10.1038/ngeo944 [Google Scholar]
  22. Koster, R. D., Suarez, M. J., Higgins, R. W., & Dool, H. V. (2003). Observational evidence that soil moisture variations affect precipitation. Geophysical Research Letters, 30 (5), 1241. http://doi.org/10.1029/2002GL016571 [Google Scholar]
  23. Lehmann, P., Gambazzi, F., Suski, B., Baron, L., Askarinejad, A., Springman, S.M., Holliger, K., & Or, D. (2013). Evolution of soil wetting patterns preceding a hydrologically induced landslide inferred from electrical resistivity survey and point measurements of volumetric water content and pore water pressure. Water Resources Research, 49, 7992–8004. http://doi.org/10.1002/2013WR014560 [Google Scholar]
  24. Lin, H. (2010). Earth's critical zone and hydropedology: concepts, characteristics, and advances. Hydrology and Earth System Sciences, 14, 25–45. [Google Scholar]
  25. Lin, H. (2011). Three principles of soil change and pedogenesis in time and space. Soil Science Society of America Journal, 75, 2049–2070. http://doi.org/10.2136/sssaj2011.0130 [Google Scholar]
  26. Liu, G., Wang, Z., & Jiang T. (2016). Qos-aware throughput maximization in wireless powered underground sensor networks. IEEE Transactions on Communications, 64(11), 4776–4789. http://doi.org/10.1109/TCOMM.2016.2602863 [Google Scholar]
  27. Markham, A., & Trigoni, N. (2012). Magneto-inductive networked rescue system (miners): taking sensor networks underground. In: Proceedings of the 11th ICPS, ACM, pp. 317–328. http://doi.org/10.1145/2185677.2185746 [Google Scholar]
  28. Mosuro, G., Bayewa, O., & Oloruntola, M. (2012). Application of vertical electric soundings for foundation investigation in a basement complex terrain: a case study of Ijebu Igbo, Southwestern Nigeria. In: Near Surface Geophysics Environ. Protection, Changsha, China, pp. 29–34. [Google Scholar]
  29. Nwankwo, C., & Ogagarue, D. (2012). An Investigation of Temperature Variation at Soil Depth in Parts of Southern Nigeria. American Journal of Environmental Engineering, 2(5), 142-147. [Google Scholar]
  30. Ogbuagu, D.H., & Okoli, C.G. (2013). What influence does removal of riparian vegetation have on primary productivity of a river? Central European Journal of Experimental Biology, 2(2), 5-12. [Google Scholar]
  31. Onweremadu, E. U., Akamigbo, F. O. R., & Igwe, C. A. (2008). Soil quality morphological index in relation to organic carbon content of soils in southeastern Nigeria. Trends in Applied Sciences Research, 3, 76-82. http://doi.org/10.3923/tasr.2008.76.82 [Google Scholar]
  32. Onweremadu, E. U., Eshete, E. T., Osuji, G. E., Unamba-Oparah, I., Obiefuna, J. C., & Onwuliri, C. O. E. (2007). Anisotropy of edaphic properties in slope soils of a university farm in Owerri, South Eastern Nigeria. The Journal of American Science, 3(4), 52-61. [Google Scholar]
  33. Pakparvar, M., Cornelis, W., Gabriels, D., Mansouri, Z., & Kowsar, S. A. (2016). Enhancing modelled water content by dielectric permittivity in stony soils. Soil Research, 54(3), 360–370. [Google Scholar]
  34. Patrizi, G., Bartolini, A., Ciani, L., Gallo, V., Sommella, P., & Carratù, M. (2022). A Virtual Soil Moisture Sensor for Smart Farming Using Deep Learning. IEEE Transactions on Instrumentation and Measurement, 71, 1-11. [Google Scholar]
  35. Polo, J., Hornero, G., Duijneveld, C., García, A., Casas, O. (2015). Design of a low-cost Wireless Sensor Network with UAV mobile node for agricultural applications. Computers and Electronics in Agriculture, 119, 19–32. https://doi.org/10.1016/j.compag.2015.09.024 [Google Scholar]
  36. Rashid, B. & Rehmani, M. (2016). Applications of wireless sensor networks for urban areas: a survey. Journal of Network and Computer Applications, 60, 192–219. [Google Scholar]
  37. Razman, N. A., Wan Ismail, W. Z., Abd Razak, M. H., Ismail, I., & Jamaludin, J. (2023). Design and analysis of water quality monitoring and filtration system for different types of water in Malaysia. International Journal of Environmental Science and Technology, 20(4), 3789-3800. [Google Scholar]
  38. Robinson, D., Campbell, C., Hopmans, J., Hornbuckle, B., Jones, S., & Knight, R. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone Journal, 7(1), 358–389. https://doi.org/10.2136/vzj2007.0143 [Google Scholar]
  39. Salam, A., Vuran, M. C., & Irmak, S. (2019). Di-Sense: In situ real-time permittivity estimation and soil moisture sensing using wireless underground communications. Computer Networks, 151, 31–41. [Google Scholar]
  40. Schwamback, D., Persson, M., Berndtsson, R., Bertotto, L. E., Kobayashi, A. N. A., & Wendland, E. C. (2023). Automated Low-Cost Soil Moisture Sensors: Trade-Off between Cost and Accuracy. Sensors, 23(5), 2451. https://doi.org/10.3390/s23052451 [Google Scholar]
  41. Silva, A. R., & Vuran, M. C. (2010a). (CPS)2: integration of center pivot systems with wireless underground sensor networks for autonomous precision agriculture. In: Proceedings of ACM/IEEE International Conference on Cyber-Physical Systems. Stockholm, Sweden, pp. 79–88. https://doi.org/10.1145/1795194.1795206 [Google Scholar]
  42. Silva, A. R., & Vuran, M.C. (2010b). Development of a testbed for wireless underground sensor networks. EURASIP Journal on Wireless Communications and Networking, 2010: 620307. https://doi.org/10.1155/2010/620307 [Google Scholar]
  43. Song, L., Zhu, J., Yan, Q., & Kang, H. (2012). Estimation of groundwater levels with vertical electrical sounding in the semiarid area of South Keerqin sandy aquifer, China. Journal of Applied Geophysics, 83, 11-18. [Google Scholar]
  44. Sun, Z., Wang, P., Vuran, M. C., Al-Rodhaan, M. A., Al-Dhelaan, A. M., & Akyildiz, I. F. (2011). Border patrol through advanced wireless sensor networks. Ad Hoc Networks, 9(3), 468–477. [Google Scholar]
  45. Susha, L. S., Singh, D., & Maryann, S. A. (2014). Critical Review of Soil Moisture Measurement. Journal of the International Measurement Confederation, 54, 92-105 [Google Scholar]
  46. Taylor, C. M., de Jeu, R. M., Guichard, F., Harris, P. P., & Dorigo, W. A. (2012). Afternoon rain more likely over drier soils. Nature, 489(7416), 423–426. http://doi.org/10.1038/nature11377 [Google Scholar]
  47. Uppal, M., Gupta, D., Goyal, N., Imoize, A. L., Kumar, A., Ojo, S., & Choi, J. (2023). A Real-Time Data Monitoring Framework for Predictive Maintenance Based on the Internet of Things. Complexity, 2023, 9991029. https://doi.org/10.1155/2023/9991029 [Google Scholar]
  48. USDA (2017). United States Department of Agriculture Handbook No. 18. Washington DC: U.S. Government Printing Office, Washington DC. [Google Scholar]
  49. Vuran, M. C., Salam, A, Wong, R., & Irmak, S. (2018). Internet of underground things in precision agriculture: architecture and technology aspects. Ad Hoc Networks, 81, 160–173. https://doi.org/10.1016/j.adhoc.2018.07.017 [Google Scholar]
  50. Wang, C., Guo, W., Yang, K., Wang, X., & Meng, Q. (2022). Real-Time Monitoring System of Landslide Based on LoRa Architecture. Frontiers in Earth Science, 10, 1009. [Google Scholar]
  51. Wang, N., Zhang, N., & Wang, M. (2006). Wireless sensors in agriculture and food industry-Recent development and future perspective. Computers and Electronics in Agriculture, 50, 1–14. https://doi.org/10.1016/j.compag.2005.09.003 [Google Scholar]
  52. Wang, X., Zhou, B., Sun, X., Yue, Y., Ma W., & Zhao, M. (2015). Soil tillage management affects maize grain yield by regulating spatial distribution coordination of roots, soil moisture and nitrogen status. PloS One, 10(6), e0129231. https://doi.org/10.1371/journal.pone.0129231 [Google Scholar]
  53. Wu, X., Wang, Q., Liu, M. (2014). In-situ Soil Moisture Sensing: Measurement Scheduling and Estimation Using Sparse Sampling. ACM Transactions on Sensor Networks, 11(2), 1-29. https://doi.org/10.1145/2629439 [Google Scholar]
  54. Zhang, X., Andreyev, A., Zumpf, C., Negri, M. C., Guha, S., & Ghosh, M. (2017). Thoreau: a subterranean wireless sensing network for agriculture and the environment. In: 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) IEEE. pp. 78–84. [Google Scholar]
  55. Zhou, W., Xu, Z., Ross, D., Dignan, J., Fan, Y., Huang, Y., Wang, G., Bagtzoglou, A.C., Lei, Y., & Li, B. (2019). Towards water-saving irrigation methodology: Field test of soil moisture profiling using flat thin mm-sized soil moisture sensors (MSMSs). Sensors and Actuators B: Chemical, 298, 126857. https://doi.org/10.1016/j.snb.2019.126857 [Google Scholar]

Similar Articles

1-10 of 31

You may also start an advanced similarity search for this article.