Comparative Study on the Seed Health of Five Commonly Cultivated Wheat Varieties (Triticum aestivum L.) in Nepal

Open Access
Download PDF
AgroEnvironmental Sustainability
Sudip Ghimire , Santoshi Neupane , Rabin Kushma Tharu

Abstract

Seed-borne pathogens can negatively affect wheat crop germination, plant health, and yield, making it essential to routinely test and treat seeds. Therefore, identifying seed-borne pathogens in commonly cultivated wheat varieties is vital to ensuring sustainable food production. The study sought at the Central Agriculture Laboratory in Lalitpur, Nepal, aimed to identify seed-borne pathogens in five commonly cultivated wheat varieties and evaluate their seed health. The study utilized the Standard Blotter Method to assess various parameters, including germination percentage, pathogen incidence percentage, shoot length, and seedling vigor index, in a controlled environment. The experiment used a complete randomized design with four replications and five treatments. Five wheat varieties (Gautam, Aaditya, Bijaya, Dhaulagiri, and NL971) were sown in Petri dishes containing blotting paper wetted with sterilized distilled water to assess the incidence and severity of Bipolaris sorokiniana. The data obtained were tabulated in Microsoft Excel and analyzed using Gen Stat. The study found that Gautam had the highest Bipolaris infection (18.25%), while NL971 had the lowest (11.25%), followed by Bijaya, Dhaulagiri, and Aaditya. Dhaulagiri had the highest germination percentage (99.50%), followed by Aaditya, Bijaya, and NL971, while Gautam had the lowest (79%). Aaditya demonstrated the highest shoot and root weight, shoot length, and seedling vigor index, while Gautam had the lowest. The study concluded that Gautam was vulnerable to low seed health, while Aaditya and other varieties demonstrated stronger seed health and resistance to the pathogen. These findings are crucial for improving seed health and ensuring sustainable food production in Nepal.

Keywords

germination pathogen Petri dish seed-borne vigor

References

  1. Adhikari, P., Khatri-Chhetri, G. B., Shrestha, S. M., & Marahatta, S. (2016). Study on Prevalence of Mycoflora in Wheat Seeds. Turkish Journal of Agriculture - Food Science and Technology, 4(1), 31. https://doi.org/10.24925/turjaf.v4i1.31-35.509 [Google Scholar]
  2. Al-Sadi, A. M. (2021). Bipolaris sorokiniana-Induced Black Point, Common Root Rot, and Spot Blotch Diseases of Wheat: A Review. Frontiers in Cellular and Infection Microbiology, 11, 584899. https://doi.org/10.3389/fcimb.2021.584899 [Google Scholar]
  3. Amza, J. (2018). Seed Borne Fungi; Food Spoilage, Negative Impact and Their Management: A Review. Food Science and Quality Management, 81, 70–79. [Google Scholar]
  4. Ashraf, A., Amhed, N., Shahid, M., Zahra, T., Ali, Z., Hassan, A., Awan, A., Batool, S., Raza, M., Irfan, U., Maqsood, Z., Khalid, M., & Amjad, I. (2022). Effect of different media compositions of 2,4-d, dicamba, and picloram on callus induction in wheat (Triticum aestivum L.). Biological and Clinical Sciences Research Journal, 3(1). https://doi.org/10.54112/bcsrj.v2022i1.159 [Google Scholar]
  5. Bikesh, Y., Ramji, S., & Adesh, K. (2015). Management of spot blotch of wheat using Fungicides, Bio-agents and Botanicals. African Journal of Agricultural Research, 10(25), 2494–2500. https://doi.org/10.5897/AJAR2013.8196 [Google Scholar]
  6. Chowdhury, A. K. (2021). Threatening wheat diseases in the eastern Gangetic plains: The current status of disease resistance. Indian Phytopathology, 74(2), 333–343. https://doi.org/10.1007/s42360-021-00336-0 [Google Scholar]
  7. Daloz, A. S., Rydsaa, J. H., Hodnebrog, O., Sillmann, J., Van Oort, B., Mohr, C. W., Agrawal, M., Emberson, L., Stordal, F., & Zhang, T. (2021). Direct and indirect impacts of climate change on wheat yield in the Indo-Gangetic plain in India. Journal of Agriculture and Food Research, 4, 100132. https://doi.org/10.1016/j.jafr.2021.100132 [Google Scholar]
  8. Deb, S. C., & Khair, A. (2018). Effects of seed-borne fungi on germination and seedling vigor of aromatic rice varieties. Indian Journal of Plant Science, 7(1), 22-31. [Google Scholar]
  9. Dubey, R., Pathak, H., Chakrabarti, B., Singh, S., Gupta, D. K., & Harit, R. C. (2020). Impact of terminal heat stress on wheat yield in India and options for adaptation. Agricultural Systems, 181, 102826. https://doi.org/10.1016/j.agsy.2020.102826 [Google Scholar]
  10. Ebrahimi, M. (2018). EDTA effects on seedling emergence and growth of Chenopodium album (L.) in Pb contaminated soil. Iranian Journal of Plant Physiology, 8(2), 2361–2370. [Google Scholar]
  11. Gaur, A., Kumar, A., Kiran, R., & Kumari, P. (2020). Importance of Seed-Borne Diseases of Agricultural Crops: Economic Losses and Impact on Society. In R. Kumar & A. Gupta (Eds.), Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management (pp. 3–23). Springer Singapore. https://doi.org/10.1007/978-981-32-9046-4_1 [Google Scholar]
  12. Guo, Y., Gao, P., Li, F., & Duan, T. (2019). Effects of AM fungi and grass endophytes on perennial ryegrass Bipolaris sorokiniana leaf spot disease under limited soil nutrients. European Journal of Plant Pathology, 154(3), 659–671. https://doi.org/10.1007/s10658-019-01689-z [Google Scholar]
  13. Gupta, P. K., Chand, R., Vasistha, N. K., Pandey, S. P., Kumar, U., Mishra, V. K., & Joshi, A. K. (2018). Spot blotch disease of wheat: The current status of research on genetics and breeding. Plant Pathology, 67(3), 508–531. https://doi.org/10.1111/ppa.12781 [Google Scholar]
  14. Hasanah, N. A. I., Setiawan, B. I., Arif, C., Widodo, S., & Uphoff, N. (2019). Optimizing rice paddies’ lower greenhouse gas emissions and higher yield with SRI management under varying water table levels. Paddy and Water Environment, 17(3), 485–495. https://doi.org/10.1007/s10333-019-00744-z [Google Scholar]
  15. Islam, M. N., Chowdhury, S. R., Aminuzzaman, F. M., Saha, S., & Mahato, A. K. (2019). Effect of Black Pointed Seed and Vermicompost on Leaf and Seed Infection of Wheat caused by Bipolaris sorokiniana. International Journal of Bio-Resource and Stress Management, 10(3), 266–275. https://doi.org/10.23910/IJBSM/2019.10.3.1987a [Google Scholar]
  16. Jama, A. A., Hasan, M. M., Mohamed, S. Y., Addow, M. A., & Roble, A. S. M. (2018). Seed health status of selected wheat cultivars available in Bangladesh. International Journal of Agriculture and Veterinary Science, 11(1), 80-92. [Google Scholar]
  17. Kameswara Rao, N., Dulloo, M. E., & Engels, J. M. M. (2017). A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genetic Resources and Crop Evolution, 64(5), 1061–1074. https://doi.org/10.1007/s10722-016-0425-9 [Google Scholar]
  18. Khan, A. M., Khan, M., Salman, H. M., Zia Ullah Ghazali, H. M., Imtiaz Ali, R., Hussain, M., Yousaf, M. M., Hafeez, Z., Khawja, M. S., Ali Alharbi, S., Alfarraj, S., Arif, M., & Nabeel, M. (2023). Detection of seed-borne fungal pathogens associated with wheat (Triticum aestivum L.) seeds collected from farmer fields and grain market. Journal of King Saud University - Science, 35(4), 102590. https://doi.org/10.1016/j.jksus.2023.102590 [Google Scholar]
  19. Kuyu, C. G., & Tola, Y. B. (2018). Assessment of banana fruit handling practices and associated fungal pathogens in Jimma town market, southwest Ethiopia. Food Science & Nutrition, 6(3), 609–616. https://doi.org/10.1002/fsn3.591 [Google Scholar]
  20. Liu, Q., Yuan, H., Li, M., Wang, Z., Cui, D., Ye, Y., Sun, Z., Tan, X., Schwarzacher, T., & Heslop-Harrison, J. S. (2022). Chromosome-scale genome assembly of the diploid oat Avena longiglumis reveals the landscape of repetitive sequences, genes and chromosome evolution in grasses [Preprint]. Genomics, https://doi.org/10.1101/2022.02.09.479819 [Google Scholar]
  21. Minaeva, O. M., Akimova, E. E., Tereshchenko, N. N., Zyubanova, T. I., Apenysheva, M. V., & Kravets, A. V. (2018). Effect of Pseudomonas Bacteria on Peroxidase Activity in Wheat Plants when Infected with Bipolaris sorokiniana. Russian Journal of Plant Physiology, 65(5), 717–725. https://doi.org/10.1134/S1021443718040052 [Google Scholar]
  22. Momtaz, M., Shamsi, S., & Dey, T. (2022). Prevalence of fungi associated with seven wheat varieties and seed quality analysis. Journal of Biodiversity Conservation and Bioresource Management, 8(1), 33–48. https://doi.org/10.3329/jbcbm.v8i1.62221 [Google Scholar]
  23. Nallathambi, P., Umamaheswari, C., Lal, S. K., Manjunatha, C., & Berliner, J. (2020). Mechanism of Seed Transmission and Seed Infection in Major Agricultural Crops in India. In R. Kumar & A. Gupta (Eds.), Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management (pp. 749–791). Springer Singapore. https://doi.org/10.1007/978-981-32-9046-4_26 [Google Scholar]
  24. Nepal, S., Shrestha, S. M., Manadhar, H. K., & Yadav, R. K. (2020). Field response of wheat genotypes to spot blotch under different sowing dates at Rampur, Chitwan, Nepal. Journal of Agriculture and Forestry University, 4(1), 83–90. https://doi.org/10.3126/jafu.v4i1.47050 [Google Scholar]
  25. Pandey, A., Paudel, R., Kafle, K., Sharma, M., Maharjan, N., Das, N., & Basnet, R. (2018). Varietal Screening of Wheat Genotypes against Spot Blotch Disease (Bipolaris sorokiniana) Under Field Condition at Bhairahawa, Nepal. Journal of the Institute of Agriculture and Animal Science, 35(1), 267–276. https://doi.org/10.3126/jiaas.v35i1.22555 [Google Scholar]
  26. Rysbekova, A. M., & Sultanova, N. Zh. (2022). Biological make-up of soil and seed infection by the root rot pathogen (Bipolaris sorokiniana) of barley in the Southeastern Region of Kazakhstan. Rhizosphere, 22, 100536. https://doi.org/10.1016/j.rhisph.2022.100536 [Google Scholar]
  27. Saeed, M. F., Jamal, A., Ahmad, I., Ali, S., Shah, G. M., Husnain, S. K., Farooq, A., & Wang, J. (2020). Storage Conditions Deteriorate Cotton and Wheat Seeds Quality: An Assessment of Farmers’ Awareness in Pakistan. Agronomy, 10(9), 1246. https://doi.org/10.3390/agronomy10091246 [Google Scholar]
  28. Sharma, A. B., Singh, A., & Singh, T. P. (2021). Effect of black point on seed germination parameters in popular wheat cultivars of Northern India. Indian Phytopathology, 74(1), 271–275. https://doi.org/10.1007/s42360-020-00294-z [Google Scholar]
  29. Shewry, P. R., & Hey, S. J. (2015). The contribution of wheat to human diet and health. Food and Energy Security, 4(3), 178–202. https://doi.org/10.1002/fes3.64 [Google Scholar]
  30. Shewry, P. R., Hassall, K. L., Grausgruber, H., Andersson, A. A. M., Lampi, A. ‐M., Piironen, V., Rakszegi, M., Ward, J. L., & Lovegrove, A. (2020). Do modern types of wheat have lower quality for human health? Nutrition Bulletin, 45(4), 362–373. https://doi.org/10.1111/nbu.12461 [Google Scholar]
  31. Simón, M. R., Fleitas, M. C., Castro, A. C., & Schierenbeck, M. (2020). How Foliar Fungal Diseases Affect Nitrogen Dynamics, Milling, and End-Use Quality of Wheat. Frontiers in Plant Science, 11, 569401. https://doi.org/10.3389/fpls.2020.569401 [Google Scholar]
  32. Singh, K., Aggarwal, R., Sharma, S., Gurjar, M. S., Manjunatha, C., & Choudhary, M. (2021). Molecular and phenotypic analysis reveals cross infection of Bipolaris species in wheat and rice. Indian Phytopathology, 74(4), 929–938. https://doi.org/10.1007/s42360-021-00405-4 [Google Scholar]
  33. Thapa, S., Ghimire, A., Adhikari, J., Thapa, A., & Thapa, B. (2020). Impacts of sowing and climatic conditions on wheat yield in Nepal. Malaysian Journal of Halal Research, 3(1), 38–40. https://doi.org/10.2478/mjhr-2020-0006 [Google Scholar]
  34. Ullah, A., Sadaf, S., Ullah, S., Alshaya, H., Okla, M. K., Alwasel, Y. A., & Tariq, A. (2022). Using Halothermal Time Model to Describe Barley (Hordeum vulgare L.) Seed Germination Response to Water Potential and Temperature. Life, 12(2), 209. https://doi.org/10.3390/life12020209 [Google Scholar]
  35. Wen, D., Hou, H., Meng, A., Meng, J., Xie, L., & Zhang, C. (2018). Rapid evaluation of seed vigor by the absolute content of protein in seed within the same crop. Scientific Reports, 8(1), 5569. https://doi.org/10.1038/s41598-018-23909-y [Google Scholar]
  36. Xu, J., Shen, Y., Zheng, Y., Smith, G., Sun, X. S., Wang, D., Zhao, Y., Zhang, W., & Li, Y. (2021). Duckweed (Lemnaceae) for potentially nutritious human food: A review. Food Reviews International, 1–15. https://doi.org/10.1080/87559129.2021.2012800 [Google Scholar]

Similar Articles

1-10 of 11

You may also start an advanced similarity search for this article.