Abstract
Seed storage innovation assumes an essential part in guaranteeing worldwide food security by safeguarding genetic variety and preserving seed feasibility over time. This review article gives a complete outline of ongoing patterns and advances in supportable seed stockpiling strategies. Starting with an investigation of the significance of seed storage about food security challenges, the audit digs into conventional seed storing strategies and their obstacles. Additionally review also provides a comprehensive analysis of maintainable methodologies like controlled air capacity, cryopreservation, and seed preparing, featuring their adequacy in dragging out seed suitability while diminishing energy utilization and natural effect. Moreover, the review discusses the incorporation of digital technologies, for example, artificial intelligence and blockchain, in seed storage management to enhance the traceability and convenience of seed collections. Additionally, the role of community-based seed banks and participatory plant breeding in promoting seed resilience against climate change is explored. By discussing current research findings and practical applications, this review aims to inform policymakers, researchers, and practitioners about the diverse range of sustainable seed storage solutions available to safeguard global agricultural biodiversity and ensure food security in the face of evolving ecological challenges.
Keywords
References
- Abdul-Baki, A. A., & Anderson, J. D. (1972). Physiological and biochemical deterioration of seeds. Seed Biology, 2, 283-315. [Google Scholar]
- Adetunji, A. E., Adetunji, T. L., Varghese, B., Sershen, & Pammenter, N. W. (2021). Oxidative stress, ageing and methods of seed invigoration: an overview and perspectives. Agronomy, 11(12), 2369. https://doi.org/10.3390/agronomy11122369 [Google Scholar]
- Afzal I, Bakhtavar MA, Ishfaq M, Sagheer M, Baributsa D (2017) Maintaining dryness during storage contributes to higher maize seed quality. Journal of Stored Products Research, 72:49–53. https://doi.org/10.1016/j.jspr.2017.04.001. [Google Scholar]
- Afzal, I., Bakhtavar, M. A., Ishfaq, M., Sagheer, M., & Baributsa, D. (2017). Maintaining dryness during storage contributes to higher maize seed quality. Journal of Stored Products Research, 72, 49-53.https://doi.org/10.1016/j.jspr.2017.04.001 [Google Scholar]
- Afzal, I., Javed, T., Amirkhani, M., & Taylor, A. G. (2020). Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture, 10(11), 526. https://doi.org/10.3390/agriculture10110526 [Google Scholar]
- Afzal, I., Zahid, S., & Mubeen, S. (2019). Tools and techniques of postharvest processing of food grains and seeds. Agronomic Crops: Volume 2: Management Practices, 583-604. https://doi.org/10.1007/978-981-32-9783-8_26 [Google Scholar]
- Albahri, G., Alyamani, A. A., Badran, A., Hijazi, A., Nasser, M., Maresca, M., & Baydoun, E. (2023). Enhancing essential grains yield for sustainable food security and bio-safe agriculture through latest innovative approaches. Agronomy, 13(7), 1709. https://doi.org/10.3390/agronomy13071709 [Google Scholar]
- Alemayehu, S., Abera, F. A., Ayimut, K. M., Darnell, R., Mahroof, R., Harvey, J., & Subramanyam, B. (2023). Effects of Storage Duration and Structures on Sesame Seed Germination, Mold Growth, and Mycotoxin Accumulation. Toxins, 15(1), 39. https://doi.org/10.3390/toxins15010039 [Google Scholar]
- Altieri, M. A., & Koohafkan, P. (2008). Enduring farms: climate change, smallholders and traditional farming communities (Vol. 6). Penang: Third World Network (TWN), pp. 1-10. [Google Scholar]
- Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35(3), 869-890. https://doi.org/10.1007/s13593-015-0285-2 [Google Scholar]
- Amusa, O. D., Emereuwa, E. A., Akinyosoye, S. T., Olayiwola, O. I., Osunkojo, O. V., Adetola, A. A., & Oboh, B. O. (2023). Seed storage proteins and seed coat compounds additively influence Callosobruchus maculatus Fab. tolerance in selected cowpea (Vigna unguiculata L. Walp.) varieties. Legume Science, e201. https://doi.org/10.1002/leg3.201 [Google Scholar]
- Anderson, K. (2010). Economic impacts of policies affecting crop biotechnology and trade. New Biotechnology, 27(5), 558-564. https://doi.org/10.1016/j.nbt.2010.05.012 [Google Scholar]
- Araujo, S. D. S., Paparella, S., Dondi, D., Bentivoglio, A., Carbonera, D., & Balestrazzi, A. (2016). Physical methods for seed invigoration: advantages and challenges in seed technology. Frontiers in Plant Science, 7, 646. https://doi.org/10.3389/fpls.2016.00646 [Google Scholar]
- Ataei Kachouei, M., Kaushik, A., & Ali, M. A. (2023). Internet of Things‐Enabled Food and Plant Sensors to Empower Sustainability. Advanced Intelligent Systems, 2300321. https://doi.org/10.1002/aisy.202300321 [Google Scholar]
- Balyan, S., Jangir, H., Tripathi, S. N., Tripathi, A., Jhang, T., & Pandey, P. (2024). Seeding a Sustainable Future: Navigating the Digital Horizon of Smart Agriculture. Sustainability, 16(2), 475. https://doi.org/10.3390/su16020475 [Google Scholar]
- Beikzadeh, S., Khezerlou, A., Jafari, S. M., Pilevar, Z., & Mortazavian, A. M. (2020). Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. Advances in Colloid and Interface Science, 280, 102164. https://doi.org/10.1016/j.cis.2020.102164 [Google Scholar]
- Benelli, C. (2021). Plant cryopreservation: A look at the present and the future. Plants, 10(12), 2744.) https://doi.org/10.3390/plants10122744 [Google Scholar]
- Bishaw, Z., Niane, A. A., & Gan, Y. (2007). Quality seed production. Lentil: An ancient crop for modern times, pp. 349-383. https://doi.org/10.1007/978-1-4020-6313-8_21 [Google Scholar]
- Bogucz, E. A. (2017). Advanced Manufacturing for Thermal and Environmental Control Systems: Achieving National Energy Goals (No. DOE-SYRACUSE-EE6031). Syracuse Univ., NY (United States). https://doi.org/10.2172/1344177 [Google Scholar]
- Bonome, L. T. S., Bittencourt, H. H., Moura, G. S., Franzener, G., & de Carvalho, J. H. (2020). Natural products for alternative seed treatment. In: Advances in Seed Production and Management, Springer. pp. 399-418. https://doi.org/10.1007/978-981-15-4198-8_18 [Google Scholar]
- Bora, S., Ceccacci, I., Delgado, C., & Townsend, R. (2011). Food security and conflict. World Bank. [Google Scholar]
- Brookes, G., & Barfoot, P. (2012). Global impact of biotech crops: environmental effects, 1996–2010. GM Crops & Food, 3(2), 129-137. https://doi.org/10.4161/gmcr.20061 [Google Scholar]
- Chandel, A., Mann, R., Kaur, J., Norton, S., Edwards, J., Spangenberg, G., & Sawbridge, T. (2021). Implications of seed vault storage strategies for conservation of seed bacterial microbiomes. Frontiers in Microbiology, 12, 784796. https://doi.org/10.3389/fmicb.2021.784796 [Google Scholar]
- Chel, A., & Kaushik, G. (2011). Renewable energy for sustainable agriculture. Agronomy for Sustainable Development, 31, 91-118. https://doi.org/10.1051/agro/2010029 [Google Scholar]
- Chen, H., Osuna, D., Colville, L., Lorenzo, O., Graeber, K., Kuester, H., ... & Kranner, I. (2013). Transcriptome-wide mapping of pea seed ageing reveals a pivotal role for genes related to oxidative stress and programmed cell death. Plos one, 8(10), e78471. https://doi.org/10.1371/annotation/f8467b75-4eef-4c44-ad20-eee34c784a66 [Google Scholar]
- Cheng, C. M., Tsao, S. L., & Lin, P. Y. (2014). SEEDS: A solar-based energy-efficient distributed server farm. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(1), 143-156. 10.1109/TSMC.2014.2329277 [Google Scholar]
- Chhabra, R., & Singh, T. (2019). Seed aging, storage and deterioration: An irresistible physiological phenomenon. Agricultural Reviews, 40(3), 234-238. http://dx.doi.org/10.18805/ag.R-1914 [Google Scholar]
- Chin, H. F., Quek, P., & Sinniah, U. R. (2012). Seed Banks for Future Generation. In Conservation of Tropical Plant Species pp. 43-63. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-3776-5_3 [Google Scholar]
- Copeland, L. O., & McDonald, M. F. (2012). Principles of seed science and technology. Springer Science & Business Media. [Google Scholar]
- Dadlani, M., Gupta, A., Sinha, S. N., Kavali, R. (2023). Seed Storage and Packaging. In: Dadlani, M., Yadava, D.K. (eds) Seed Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-5888-5_11. [Google Scholar]
- De Boef, W. S., Dempewolf, H., Byakweli, J. M., & Engels, J. M. M. (2010). Integrating genetic resource conservation and sustainable development into strategies to increase the robustness of seed systems. Journal of Sustainable Agriculture, 34(5), 504-531. https://doi.org/10.1080/10440046.2010.484689 [Google Scholar]
- De Vitis, M., Hay, F. R., Dickie, J. B., Trivedi, C., Choi, J., & Fiegener, R. (2020). Seed storage: maintaining seed viability and vigor for restoration use. Restoration Ecology, 28, S249-S255. https://doi.org/10.1111/rec.13174 [Google Scholar]
- Deguine, J. P., Aubertot, J. N., Bellon, S., Côte, F., Lauri, P. E., Lescourret, F., & Lamichhane, J. R. (2023). Agroecological crop protection for sustainable agriculture. Advances in Agronomy, 178, 1-59. https://doi.org/10.1016/bs.agron.2022.11.002 [Google Scholar]
- Dhalaria, R., Verma, R., Kumar, D., Puri, S., Tapwal, A., Kumar, V., & Kuca, K. (2020). Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidants, 9(11), 1123. https://doi.org/10.3390/antiox9111123 [Google Scholar]
- Dwivedi, S. L., Spillane, C., Lopez, F., Ayele, B. T., & Ortiz, R. (2021). First the seed: Genomic advances in seed science for improved crop productivity and food security. Crop Science, 61(3), 1501-1526. https://doi.org/10.1002/csc2.20402 [Google Scholar]
- Eevera, T., Kumaran, S., Djanaguiraman, M., Thirumaran, T., Le, Q. H., & Pugazhendhi, A. (2023). Unleashing the potential of nanoparticles on seed treatment and enhancement for sustainable farming. Environmental Research, 236, 116849. https://doi.org/10.1016/j.envres.2023.116849 [Google Scholar]
- El Chami, D., Daccache, A., & El Moujabber, M. (2020). How can sustainable agriculture increase climate resilience? A systematic review. Sustainability, 12(8), 3119. https://doi.org/10.3390/su12083119 [Google Scholar]
- Erickson, V. J., & Halford, A. (2020). Seed planning, sourcing, and procurement. Restoration Ecology, 28, S219-S227. https://doi.org/10.1111/rec.13199 [Google Scholar]
- Fan, S., Cho, E. E., Meng, T., & Rue, C. (2021). How to prevent and cope with coincidence of risks to the global food system. Annual Review of Environment and Resources, 46, 601-623. https://doi.org/10.1146/annurev-environ-012220-020844 [Google Scholar]
- Fan, Y., An, T., Wang, Q., Yang, G., Huang, W., Wang, Z., & Tian, X. (2023). Non-destructive detection of single-seed viability in maize using hyperspectral imaging technology and multi-scale 3D convolutional neural network. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1248598). [Google Scholar]
- Fowler, C., & Mooney, P. R. (1990). Shattering: food, politics, and the loss of genetic diversity. University of Arizona Press. [Google Scholar]
- Frandoloso, F. S., Galon, L., Menegat, A. D., Bianchessi, F., Chechi, L., Forte, C. T., & Nunes, U. R. (2018). Chemical treatment and storage period influence on physiological characteristics of maize seeds. Communications in Plant Sciences. http://doi.org/10.26814/cps2018007 [Google Scholar]
- Funnekotter, B., Mancera, R. L., & Bunn, E. (2017). Advances in understanding the fundamental aspects required for successful cryopreservation of Australian flora. In Vitro Cellular & Developmental Biology-Plant, 53, 289-298. https://doi.org/10.1007/s11627-017-9850-5 [Google Scholar]
- Garcia-Mier, L., Jimenez-Garcia, S. N., Chapa-Oliver, A. M., Mejia-Teniente, L., Ocampo-Velazquez, R. V., Rico-García, E., & Torres-Pacheco, I. (2014). Strategies for sustainable plant food production: facing the current agricultural challenges—agriculture for today and tomorrow. Biosystems Engineering: Biofactories for Food Production in the Century XXI, pp. 1-50. https://doi.org/10.1007/978-3-319-03880-3_1 [Google Scholar]
- Gough, R. E. (2020). Seed quality: basic mechanisms and agricultural implications. CRC Press. [Google Scholar]
- Govindaraj, M., Masilamani, P., Albert, V. A., & Bhaskaran, M. (2016). Plant derived smoke stimulation for seed germination and enhancement of crop growth: a review. Agricultural Reviews, 37(2), 87-100. http://doi.org/10.18805/ar.v37i2.10735 [Google Scholar]
- Grote, U. (2014). Can we improve global food security? A socio-economic and political perspective. Food Security, 6, 187-200. https://doi.org/10.1007/s12571-013-0321-5 [Google Scholar]
- Gupta, A., & Kumar, R. (2020). Management of seed-borne diseases: an integrated approach. In Seed-borne diseases of agricultural crops: detection, diagnosis & management, pp. 717-745. https://doi.org/10.1007/978-981-32-9046-4_25 [Google Scholar]
- Harrington, J. F., & Kozlowski, T. T. (1972). Seed storage and longevity. Seed biology, 3, 145-245. [Google Scholar]
- Hay, F. R., Rezaei, S., Wolkis, D., & McGill, C. (2023). Determination and control of seed moisture. Seed Science and Technology, 51(2), 267-285. https://doi.org/10.15258/sst.2023.51.2.11 [Google Scholar]
- Hlatshwayo, S. I., Modi, A. T., Hlahla, S., Ngidi, M., & Mabhaudhi, T. (2021). Usefulness of seed systems for reviving smallholder agriculture: A South African perspective. African Journal of Food, Agriculture, Nutrition and Development, 21(2), 17581-17603. [Google Scholar]
- Howarth, C. J., & Ougham, H. J. (1993). Gene expression under temperature stress. New Phytologist, 125(1), 1-26. https://doi.org/10.1111/j.1469-8137.1993.tb03862.x [Google Scholar]
- Ingram, J. (2011). A food systems approach to researching food security and its interactions with global environmental change. Food security, 3, 417-431. https://doi.org/10.1007/s12571-011-0149-9 [Google Scholar]
- Jauhar, P. P. (2006). Modern biotechnology as an integral supplement to conventional plant breeding: the prospects and challenges. Crop science, 46(5), 1841-1859. https://doi.org/10.2135/cropsci2005.07-0223 [Google Scholar]
- Javed, T., Afzal, I., Shabbir, R., Ikram, K., Zaheer, M. S., Faheem, M., & Iqbal, J. (2022). Seed coating technology: An innovative and sustainable approach for improving seed quality and crop performance. Journal of the Saudi Society of Agricultural Sciences, 21(8), 536-545. https://doi.org/10.1016/j.jssas.2022.03.003 [Google Scholar]
- Jhanji, S., Goyal, E., Chumber, M., & Kaur, G. (2024). Exploring fine tuning between phytohormones and ROS signaling cascade in regulation of seed dormancy, germination and seedling development. Plant Physiology and Biochemistry, 108352. https://doi.org/10.1016/j.plaphy.2024.108352 [Google Scholar]
- Joshi, B.K. (2021). Indigenous Seeds, Seed Selection and Seed Bank for Sustainable Agriculture. Grassroots Journal of Natural Resources, 4(4), 13-26. Doi: https://doi.org/10.33002/nr2581.6853.040402 [Google Scholar]
- Jump, A. S., Marchant, R., & Peñuelas, J. (2009). Environmental change and the option value of genetic diversity. Trends in plant science, 14(1), 51-58. https://doi.org/10.1016/j.tplants.2008.10.002 [Google Scholar]
- Justice, O. L., & Bass, L. N. (1978). Principles and practices of seed storage (No. 506). US Department of Agriculture. [Google Scholar]
- Kameswara Rao, N., Dulloo, M. E., & Engels, J. M. (2017). A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genetic Resources and Crop Evolution, 64, 1061-1074. https://doi.org/10.1007/s10722-016-0425-9 [Google Scholar]
- Kang, Y., Khan, S., & Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security–A review. Progress in Natural Science, 19(12), 1665-1674. https://doi.org/10.1016/j.pnsc.2009.08.001 [Google Scholar]
- Karaca, M., & Ince, A. G. (2019). Conservation of biodiversity and genetic resources for sustainable agriculture. Innovations in Sustainable Agriculture, 363-410. https://doi.org/10.1007/978-3-030-23169-9_12 [Google Scholar]
- Karuppuchamy, P., & Venugopal, S. (2016). Integrated pest management. In Ecofriendly pest management for food security. pp. 651-684. Academic Press. https://doi.org/10.1016/B978-0-12-803265-7.00021-X [Google Scholar]
- Kassie, M., Jaleta, M., Shiferaw, B., Mmbando, F., & Mekuria, M. (2013). Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technological Forecasting and Social Change, 80(3), 525-540. https://doi.org/10.1016/j.techfore.2012.08.007 [Google Scholar]
- Kaviani, B. (2011). Conservation of plant genetic resources by cryopreservation. Australian Journal of Crop Science, 5(6), 778-800. [Google Scholar]
- Kaviani, B., & Kulus, D. (2022). Cryopreservation of endangered ornamental plants and fruit crops from tropical and subtropical regions. Biology, 11(6), 847. [Google Scholar]
- Kew (2022), Royal botanic garden, Freezing seeds for the future. Available online: https://www.kew.org/read-and-watch/seed-collecting-msb (accessed on 10 January 2024). [Google Scholar]
- Khan, M. S. I., & Shrestha, R. B. (2020). Strengthening Seed Systems for Improving Food and Nutrition Security in Bangladesh. Strengthening Seed Systems, 93, 1-10. [Google Scholar]
- Khan, N., Ray, R. L., Sargani, G. R., Ihtisham, M., Khayyam, M., & Ismail, S. (2021). Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability, 13(9), 4883. https://doi.org/10.3390/su13094883 [Google Scholar]
- Kitinoja, L., & Kader, A. A. (2002). Small-scale postharvest handling practices: a manual for horticultural crops. Carlifonia: University of California, Davis, Postharvest Technology Research and Information Center. [Google Scholar]
- Kumar, D., & Kalita, P. (2017). Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods, 6(1), 8. https://doi.org/10.3390/foods6010008 [Google Scholar]
- Kurek, K., Plitta-Michalak, B., & Ratajczak, E. (2019). Reactive oxygen species as potential drivers of the seed aging process. Plants, 8(6), 174. https://doi.org/10.3390/plants8060174 [Google Scholar]
- Lamichhane, J. R., Corrales, D. C., & Soltani, E. (2022). Biological seed treatments promote crop establishment and yield: a global meta-analysis. Agronomy for Sustainable Development, 42(3), 45. https://doi.org/10.1007/s13593-022-00761-z [Google Scholar]
- Leri, M., Scuto, M., Ontario, M. L., Calabrese, V., Calabrese, E. J., Bucciantini, M., & Stefani, M. (2020). Healthy effects of plant polyphenols: molecular mechanisms. International Journal of Molecular Sciences, 21(4), 1250. https://doi.org/10.3390/ijms21041250 [Google Scholar]
- Loch, D. S., & Boyce, K. G. (2003). Balancing public and private sector roles in an effective seed supply system. Field Crops Research, 84(1-2), 105-122. https://doi.org/10.1016/S0378-4290(03)00144-8 [Google Scholar]
- Long, R. L., Gorecki, M. J., Renton, M., Scott, J. K., Colville, L., Goggin, D. E., & Finch‐Savage, W. E. (2015). The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biological Reviews, 90(1), 31-59. https://doi.org/10.1111/brv.12095 [Google Scholar]
- Macovei, A., Pagano, A., Leonetti, P., Carbonera, D., Balestrazzi, A., & Araújo, S. S. (2017). Systems biology and genome-wide approaches to unveil the molecular players involved in the pre-germinative metabolism: implications on seed technology traits. Plant Cell Reports, 36, 669-688. https://doi.org/10.1007/s00299-016-2060-5 [Google Scholar]
- Madsen, M. D., Davies, K. W., Boyd, C. S., Kerby, J. D., & Svejcar, T. J. (2016). Emerging seed enhancement technologies for overcoming barriers to restoration. Restoration Ecology, 24, S77-S84. https://doi.org/10.1111/rec.12332 [Google Scholar]
- Maity, A., Paul, D., Lamichaney, A., Sarkar, A., Babbar, N., Mandal, N., & Chakrabarty Chakrabarty, S. K. (2023). Climate change impacts on seed production and quality: current knowledge, implications, and mitigation strategies. Seed Science and Technology, 51(1), 7-38. https://doi.org/10.15258/sst.2023.51.1.07 [Google Scholar]
- Maity, A., Vijay, D., Mukherjee, A., & Lamichaney, A. (2016). Potential impacts of climate change on quality seed production: a perspective of hill agriculture. In Conservation Agriculture: An approach to combat climate change in Indian Himalaya, pp. 459-485. https://doi.org/10.1007/978-981-10-2558-7_18 [Google Scholar]
- McDonald, M. F., & Copeland, L. O. (2012). Seed production: principles and practices. Springer Science & Business Media. [Google Scholar]
- McGuire, S., & Sperling, L. (2013). Making seed systems more resilient to stress. Global Environmental Change, 23(3), 644-653. https://doi.org/10.1016/j.gloenvcha.2013.02.001 [Google Scholar]
- McKenzie, F. C., & Williams, J. (2015). Sustainable food production: constraints, challenges and choices by 2050. Food Security, 7, 221-233. https://doi.org/10.1007/s12571-015-0441-1 [Google Scholar]
- Meixner Vasquez, V. (2021). Beyond seed security responses: impacts of seed programmes on seed security, food security and income generation of small-scale farmers in Malawi and Uganda (Master's thesis, Norwegian University of Life Sciences, Ås). Available online: https://hdl.handle.net/11250/2835665 (accessed on 10 January 2024). [Google Scholar]
- Mendoza‐Segovia, Y. A., Zúñiga‐Vega, J. J., & Bonfil, C. (2022). Seed viability in Bursera: The relative contribution of environmental variation and phylogenetic relatedness. Plant Species Biology, 37(1), 52-65. https://doi.org/10.1111/1442-1984.12356. [Google Scholar]
- Mulesa, T. H., Dalle, S. P., Makate, C., Haug, R., & Westengen, O. T. (2021). Pluralistic seed system development: a path to seed security?. Agronomy, 11(2), 372. https://doi.org/10.3390/agronomy11020372 [Google Scholar]
- Muthii, T. K. (2014). Quality status of farm saved bean seed in Maragua sub-county and management of seed-borne diseases by seed treatment (Doctoral dissertation, University of Nairobi). Available online: http://hdl.handle.net/11295/76904 (accessed on 10 January 2024). [Google Scholar]
- Nadarajan, J., Walters, C., Pritchard, H. W., Ballesteros, D., & Colville, L. (2023). Seed longevity—the evolution of knowledge and a conceptual framework. Plants, 12(3), 471. https://doi.org/10.3390/plants12030471 [Google Scholar]
- Nazarea, V. D. (2005). Heirloom seeds and their keepers: Marginality and memory in the conservation of biological diversity. University of Arizona Press.) Available online: http://repository.sustech.edu/handle/123456789/19901 (accessed on 10 January 2024). [Google Scholar]
- Nicolétis, É., Caron, P., El Solh, M., Cole, M., Fresco, L. O., Godoy-Faúndez, A., & Zurayk, R. (2019). Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security. [Google Scholar]
- Nile, S. H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M. A., Rebezov, M., & Kai, G. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. Journal of Nanobiotechnology, 20(1), 1-31.) https://doi.org/10.1186/s12951-022-01423-8 [Google Scholar]
- Orruño, E., & Morgan, M. R. (2011). Resistance of purified seed storage proteins from sesame (Sesamum indicum L.) to proteolytic digestive enzymes. Food Chemistry, 128(4), 923-929. https://doi.org/10.1016/j.foodchem.2011.03.120 [Google Scholar]
- Pandey, P. C., & Pandey, M. (2023). Highlighting the role of agriculture and geospatial technology in food security and sustainable development goals. Sustainable Development, 31(5), 3175-3195. https://doi.org/10.1002/sd.2600 [Google Scholar]
- Pathirana, R., & Carimi, F. (2022). Management and utilization of plant genetic resources for a sustainable agriculture. Plants, 11(15), 2038. https://doi.org/10.3390/plants11152038 [Google Scholar]
- Pautasso, M., Aistara, G., Barnaud, A., Caillon, S., Clouvel, P., Coomes, O. T., & Tramontini, S. (2013). Seed exchange networks for agrobiodiversity conservation. A review. Agronomy for Sustainable Development, 33, 151-175. https://doi.org/10.1007/s13593-012-0089-6 [Google Scholar]
- Peres, S. (2016). Saving the gene pool for the future: Seed banks as archives. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 55, 96-104. https://doi.org/10.1016/j.shpsc.2015.09.002 [Google Scholar]
- Pollard, C. M., & Booth, S. (2019). Food insecurity and hunger in rich countries—it is time for action against inequality. International Journal of Environmental Research and Public Health, 16(10), 1804. https://doi.org/10.3390/ijerph16101804 [Google Scholar]
- Pradhan, N., Fan, X., Martini, F., Chen, H., Liu, H., Gao, J., & Goodale, U. M. (2022). Seed viability testing for research and conservation of epiphytic and terrestrial orchids. Botanical studies, 63(1), 1-14. [Google Scholar]
- Pretty, J. (2001). The rapid emergence of genetic modification in world agriculture: contested risks and benefits. Environmental Conservation, 28(3), 248-262. https://doi.org/10.1017/S0376892901000261 [Google Scholar]
- Ramjoue, C. (2009). A review of regulatory issues raised by genetically modified organisms in agriculture. CABI Reviews, (2008), 1-10. https://doi.org/10.1079/PAVSNNR20083096 [Google Scholar]
- Rao, N. K. (2004). Plant genetic resources: Advancing conservation and use through biotechnology. African Journal of biotechnology, 3(2), 136-145. https://doi.org/10.5897/AJB2004.000-2025 [Google Scholar]
- Rasheed, A., Barqawi, A. A., Mahmood, A., Nawaz, M., Shah, A. N., Bay, D. H., & Qari, S. H. (2022). CRISPR/Cas9 is a powerful tool for precise genome editing of legume crops: a review. Molecular Biology Reports, 49(6), 5595-5609. https://doi.org/10.1007/s11033-022-07529-4 [Google Scholar]
- Rimmer, M. (2012). The Doomsday Vault: Seed Banks, Food Security and Climate Change. In Intellectual property and emerging technologies. Edward Elgar Publishing. https://doi.org/10.4337/9781781001189.00024 [Google Scholar]
- Roetter, R. P., & Van Keulen, H. (2007). Food security. In Science for agriculture and rural development in low-income countries (pp. 27-56). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-6617-7 [Google Scholar]
- Ronald, P. (2011). Plant genetics, sustainable agriculture and global food security. Genetics, 188(1), 11-20. https://doi.org/10.1534/genetics.111.128553 [Google Scholar]
- Rosegrant, M. W., Ringler, C., & Zhu, T. (2009). Water for agriculture: maintaining food security under growing scarcity. Annual Review of Environment and Resources, 34, 205-222. https://doi.org/10.1146/annurev.environ.030308.090351 [Google Scholar]
- Salgotra, R. K., & Chauhan, B. S. (2023). Genetic diversity, conservation, and utilization of plant genetic resources. Genes, 14(1), 174. https://doi.org/10.3390/genes14010174 [Google Scholar]
- Salgotra, R. K., Sharma, M., & Pandotra, P. (2019). Biotechnological interventions for sustainable conservation of plant genetic resources in the scenario of climate change. Natural Resources Conservation and Research, 2(1). https://doi.org/10.24294/nrcr.v2i1.754 [Google Scholar]
- Sharma, S., Shahzad, A., & da Silva, J. A. T. (2013). Synseed technology—a complete synthesis. Biotechnology Advances, 31(2), 186-207. https://doi.org/10.1016/j.biotechadv.2012.09.007 [Google Scholar]
- Shaw, N., Barak, R. S., Campbell, R. E., Kirmer, A., Pedrini, S., Dixon, K., & Frischie, S. (2020). Seed use in the field: delivering seeds for restoration success. Restoration Ecology, 28, S276-S285. https://doi.org/10.1111/rec.13210 [Google Scholar]
- Shvachko, N. А., & Khlestkina, E. K. (2020). Molecular genetic bases of seed resistance to oxidative stress during storage. Vavilov Journal of Genetics and Breeding, 24(5), 451. [Google Scholar]
- Siddiqui, S. A., Farooqi, M. Q. U., Bhowmik, S., Zahra, Z., Mahmud, M. C., Assadpour, E., & Jafari, S. M. (2023). Application of micro/nano-fluidics for encapsulation of food bioactive compounds-principles, applications, and challenges. Trends in Food Science & Technology, 1-10. https://doi.org/10.1016/j.tifs.2023.03.025 [Google Scholar]
- Singh, R. P., Prasad, P. V. V., & Reddy, K. R. (2015). Climate change: implications for stakeholders in genetic resources and seed sector. Advances in Agronomy, 129, 117-180. https://doi.org/10.1016/bs.agron.2014.09.002 [Google Scholar]
- Singh, R. P., Prasad, P. V., & Reddy, K. R. (2013). Impacts of changing climate and climate variability on seed production and seed industry. Advances in Agronomy, 118, 49-110. https://doi.org/10.1016/B978-0-12-405942-9.00002-5 [Google Scholar]
- Smith, S., Nickson, T. E., & Challender, M. (2021). Germplasm exchange is critical to conservation of biodiversity and global food security. Agronomy Journal, 113(4), 2969-2979. https://doi.org/10.1002/agj2.20761 [Google Scholar]
- Sudhakar, N., Karthikeyan, G., RajhaViknesh, M., Saranya, A. S., & Shurya, R. (2020). Technological Advances in Agronomic Practices of Seed Processing, Storage, and Pest Management: An Update. Advances in Seed Production and Management, 359-398. https://doi.org/10.1007/978-981-15-4198-8_17 [Google Scholar]
- Sujatha, P., Madhavi, M., Pallavi, M., Bharathi, Y., Rao, P. J. M., Rajeswari, B., & Reddy, A. A. (2023). Biological Seed Coating Innovations for Sustainable Healthy Crop Growth in Tomato. IntechOpen. [Google Scholar]
- Suleiman, R. A., & Rosentrater, K. A. (2022). Grain storage in developing countries. In Storage of Cereal Grains and Their Products. pp. 113-133. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-812758-2.00018-0 [Google Scholar]
- Tansey, G., & Rajotte, T. (Eds.). (2008). The future control of food: a guide to international negotiations and rules on intellectual property, biodiversity and food security. Earthscan. [Google Scholar]
- Taylor, A. G. (2020). Seed storage, germination, quality, and enhancements. In The physiology of vegetable crops, pp. 1-30. Wallingford UK: CABI. https://doi.org/10.1079/9781786393777.0001 [Google Scholar]
- Teixido, A. L., Toorop, P. E., Liu, U., Ribeiro, G. V., Fuzessy, L. F., Guerra, T. J., & Silveira, F. A. (2017). Gaps in seed banking are compromising the GSPC’s Target 8 in a megadiverse country. Biodiversity and Conservation, 26, 703-716. https://doi.org/10.1007/s10531-016-1267-7 [Google Scholar]
- Trail, P., Motis, T., Swartz, S., & Bicksler, A. (2021). Low-cost seed storage technologies for development impact of small-scale seed saving entities in tropical climates. Experimental Agriculture, 57(5-6), 324-337. https://doi.org/10.1017/S0014479722000023 [Google Scholar]
- Trono, D., & Pecchioni, N. (2022). Candidate Genes Associated with Abiotic Stress Response in Plants as Tools to Engineer Tolerance to Drought, Salinity and Extreme Temperatures in Wheat: An Overview. Plants, 11(23), 3358. https://doi.org/10.3390/plants11233358 [Google Scholar]
- Trusiak, M., Plitta-Michalak, B. P., & Michalak, M. (2022). Choosing the Right Path for the Successful Storage of Seeds. Plants, 12(1), 72. https://doi.org/10.3390/plants12010072 [Google Scholar]
- Vasques, A., Vallejo, V. R., Santos, M. C., & Keizer, J. J. (2014). The role of cold storage and seed source in the germination of three Mediterranean shrub species with contrasting dormancy types. Annals of Forest Science, 71(8), 863-872. https://doi.org/10.1007/s13595-014-0395-z [Google Scholar]
- Vega-Fernández, L., Quesada-Grosso, R., Viñas, M., Irías-Mata, A., Montes de Oca-Vásquez, G., Vega-Baudrit, J., & Jiménez, V. M. (2023). Current Applications and Future Perspectives of Nanotechnology for the Preservation and Enhancement of Grain and Seed Traits. Nanomaterials for Environmental and Agricultural Sectors, 191-220. https://doi.org/10.1007/978-981-99-2874-3_10 [Google Scholar]
- Ventura, L., Donà, M., Macovei, A., Carbonera, D., Buttafava, A., Mondoni, A., & Balestrazzi, A. (2012). Understanding the molecular pathways associated with seed vigor. Plant Physiology and Biochemistry, 60, 196-206. https://doi.org/10.1016/j.plaphy.2012.07.031 [Google Scholar]
- Vernooy, R., Sthapit, B., Otieno, G., Shrestha, P., & Gupta, A. (2017). The roles of community seed banks in climate change adaption. Development in Practice, 27(3), 316-327. https://doi.org/10.1080/09614524.2017.1294653 [Google Scholar]
- Walters, C., & Pence, V. C. (2021). The unique role of seed banking and cryobiotechnologies in plant conservation. Plants, People, Planet, 3(1), 83-91. https://doi.org/10.1002/ppp3.10121 [Google Scholar]
- Wang, S., Wu, M., Zhong, S., Sun, J., Mao, X., Qiu, N., & Zhou, F. (2023). A Rapid and Quantitative Method for Determining Seed Viability Using 2, 3, 5-Triphenyl Tetrazolium Chloride (TTC): With the Example of Wheat Seed. Molecules, 28(19), 6828. [Google Scholar]
- Waterworth, W. M., Footitt, S., Bray, C. M., Finch-Savage, W. E., & West, C. E. (2016). DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds. Proceedings of the National Academy of Sciences, 113(34), 9647-9652. https://doi.org/10.1073/pnas.1608829113 [Google Scholar]
- Westengen, O. T., Skarbø, K., Mulesa, T. H., & Berg, T. (2018). Access to genes: Linkages between genebanks and farmers’ seed systems. Food Security, 10, 9-25. https://doi.org/10.1007/s12571-017-0751-6 [Google Scholar]
- Wimalasekera, R. (2015). Role of seed quality in improving crop yields. In Crop production and global environmental issues, pp. 153-168. https://doi.org/10.1007/978-3-319-23162-4_6 [Google Scholar]
- Zhu, G., Liu, H., Xie, Y., Liao, Q., Lin, Y., Liu, Y., & Hu, S. (2020). Postharvest processing and storage methods for Camellia oleifera seeds. Food Reviews International, 36(4), 319-339. https://doi.org/10.1080/87559129.2019.1649688 [Google Scholar]
- Zinnen, J., Broadhurst, L. M., Gibson-Roy, P., Jones, T. A., & Matthews, J. W. (2021). Seed production areas are crucial to conservation outcomes: benefits and risks of an emerging restoration tool. Biodiversity and Conservation, 30, 1233-1256. https://doi.org/10.1007/s10531-021-02149-z [Google Scholar]

