Abstract
Long-term surface coal mining near agricultural zones can degrade arable land and reduce soil productivity. This study evaluated the effects of extended coal mining on sandy soil properties in three mining areas of Ankpa LGA, Kogi State, Nigeria—Okaba-Odagbo (55 years), Okobo-Enjema (12 years), and Onupi (9 years). Soil samples were collected from both mining sites and adjacent fallow (arable) lands and analyzed using standard methods. Statistical comparisons were made using t-tests and Pearson correlation. Across all locations, mining significantly influenced (p < 0.05) soil pH and bulk density. Mining sites showed lower pH (t = –2.49) and higher bulk density (t = 2.35) compared to fallow lands. Site-specific analysis revealed pronounced effects only at Okaba-Odagbo, where the longest mining history corresponded with increased clay content and bulk density (t = 5.00 and 5.69, respectively). No significant differences were observed at Okobo-Enjema and Onupi. When averaged across locations, mining sites had slightly higher values for clay content (10.68%), soil organic carbon (1.81%), exchangeable sodium (0.38 cmol/kg), porosity (0.44), water holding capacity (20.94%), and saturated hydraulic conductivity (56.66 cm/h) compared to fallow lands. The reduced pH at mining sites was linked to sodium and clay enrichment and loss of base-forming elements, while higher bulk density was attributed to decreased macro-aggregation. The findings suggest that coal mining alters the physical and chemical properties of tropical sandy soils, leading to acidification and compaction, which can impair soil quality, permeability, and long-term agricultural productivity.
Keywords
References
- Abdallah, A. M., Jat, H. S., Choudhary, M., Abdelaty, E. F., Sharma, P. C., & Jat, M. L. (2021). Conservation agriculture effects on soil water holding capacity and water-saving varied with management practices and agroecological conditions: A Review. Agronomy, 11(9), 1681. https://doi.org/10.3390/agronomy11091681 [Google Scholar]
- Abdelrhman, A. A., Gao, L., Li, S., Lu, J., Song, X., Zhang, M., Zheng, F., Wu, H., & Wu, X. (2021). Long-term application of organic wastes improves soil carbon and structural properties in dryland affected by coal mining activity. Sustainability, 13(10), 5686. [Google Scholar]
- Adewole, M. B., & Adesina, M. A. (2011). Impact of marble mining on soil properties in a part of Guinea Savanna zone of southwestern Nigeria. Ethiopian Journal of Environmental Studies and Management, 4(2), 1-8. http://dx.doi.org/10.4314/ejesm.v4i2.1 [Google Scholar]
- Ahmad, H. A., Rabiu, M., & Ameh, U. C. (2025). Assessing the impacts of coal mining on soil quality in Kogi East, Nigeria. International Journal of Plant and Soil Science, 37(1), 88-97. https://doi.org/10.9734/ijpss/2025/v37i15255 [Google Scholar]
- Ande, S., Ekere, A. S., & Eneji, I. S. (2021). Determination of physicochemical parameters of water and soil samples around Owukpa Coal Mine, Benue State Nigeria. ChemSearch Journal, 12(1), 120-131 [Google Scholar]
- Asensio, V., Covelo, E. F., & Kandeler, E. (2013). Soil management of copper mine tailing soils—Sludge amendment and tree vegetation could improve biological soil quality. Science of the Total Environment, 456, 82-90. https://doi.org/10.1016/j.scitotenv.2013.03.061 [Google Scholar]
- Back, M. P., Jefferson, A. J., Ruhm, C. T., & Blackwood, C. B. (2024). Effects of reclamation and deep ripping on soil bulk density and hydraulic conductivity at legacy surface mines in northeast Ohio, USA. Geoderma, 442, 116788. https://doi.org/10.1016/j.geoderma.2024.116788 [Google Scholar]
- Biswas, C. K., Mukherjee, A., & Mishra, S. P. (2013). Physico-chemical properties of overburden dumps of different ages at sonepur bazari coal mine area, Raniganj, west Bengal (INDIA). International Research Journal of Natural and Applied Sciences, 7(1-2): 57-60. [Google Scholar]
- Bodo, T., Gimah, B. G., & Seomoni, K. J. (2021). Deforestation and habitat loss: Human causes, consequences and possible solutions. Journal of Geographical Research, 4(2), 22 – 30. https://doi.org/10.30564/jgr.v4i2.3059 [Google Scholar]
- Cetin, M., Isik, P. O., Bilge, O. G., Cabuk, S. N., Kurkcuoglu, M. A. S. & Cabuk, A. (2023). Determination of the impacts of mining activities on land cover and soil organic carbon: Altintepe Gold Mine Case, Turkey. Water Air and Soil Pollution, 234, 272. https://doi.org/10.1007/s11270-023-06274-z [Google Scholar]
- Chassé, M., Lutfalla, S., Cécillon, L., Baudin, F., Abiven, S., Chenu, C., & Barré, P. (2021). Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics. Biogeosciences, 18(5), 1703-1718. https://doi.org/10.5194/bg-18-1703-2021 [Google Scholar]
- Chen, Y., Hu, Z., Li, P., Li, G., Yuan, D., & Guo, J. (2022). Assessment and effect of mining subsidence on farmland in coal–crop overlapped areas: A case of shandong Province, China. Agriculture, 12(8), 1235. https://doi.org/10.3390/agriculture12081235 [Google Scholar]
- da Luz, F. B., Gonzaga, L. C., Castioni, G. A. F., de Lima, R. P., Carvalho, J. L. N., & Cherubin, M. R. (2023). Controlled traffic farming maintains soil physical functionality in sugarcane fields. Geoderma, 432, 116427. https://doi.org/10.1016/j.geoderma.2023.116427 [Google Scholar]
- Dejun, Y., Zhengfu, B., & Shaogang, L. (2016). Impact on soil physical qualities by the subsidence of coal mining: a case study in Western China. Environmental Earth Sciences, 75, 1-14. https://doi.org/10.1007/s12665-016-5439-2 [Google Scholar]
- Diaz-Zorita, M., Perfect, E., & Grove, J.H. (2002). Disruptive methods for assessing soil structure. Soil and Tillage Research, 64(1-2), 3–22. https://doi.org/10.1016/S0167-1987(01)00254-9 [Google Scholar]
- Ekka, P., Patra, S., Upreti, M., Kumar, G., Kumar, A., & Saikia, P. (2023). Land degradation and its impacts on biodiversity and ecosystem services. Land and Environmental Management through Forestry, 77-101. https://doi.org/10.1002/9781119910527.ch4 [Google Scholar]
- Eludoyin, A. O., Ojo, A. T., Ojo, T. O., & Awotoye, O. O. (2017). Effects of artisanal gold mining activities on soil properties in a part of southwestern Nigeria. Cogent Environmental Science, 3, 1305650. http://dx.doi.org/10.1080/23311843.2017.1305650 [Google Scholar]
- Ezeaku, P. I. (2011). Evaluating the influence of open cast mining of solid minerals on soil, land use and livelihood systems in selected areas of Nasarawa State, North-Central Nigeria. Journal of Ecology and the Natural Environment, 4(3), 62-70. [Google Scholar]
- Feng, Y., Wang, J., Bai, Z., & Reading, L. (2019). Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Science Reviews, 191, 12-25. https://doi.org/10.1016/j.earscirev.2019.02.015 [Google Scholar]
- Gee, G. W., & Or, D. (2002). Particle Size Analysis. In: Dane, J. H. and Topp, G. C., Eds., Methods of Soil Analysis, Part 4, Physical Methods, Soils Science Society of America, Book Series No. 5, Madison, 255-293. https://doi.org/10.2136/sssabookser5.4.c12 [Google Scholar]
- Gideon, Y. B., & Fatoye, F. B. (2012). Sediment geochemistry of River Okura: Implication to weathering and transport. European Journal of Educational Sciences, 7, 103-111. [Google Scholar]
- Grossman, R. B., & Reinsch, T. G. (2002). Bulk Density and Linear Extensibility: Core Method. In: Dane, J. H. and Topp, G. C., Eds., Methods of Soil Analysis. Part 4, Physical Methods, SSSA, Incorporated, 208-228. https://doi.org/10.2136/sssabookser5.4.c9 [Google Scholar]
- Guo, X. M., Zhao, T. Q., Chang, W. K., Xiao, C. Y., & He, Y. X. (2018). Evaluating the effect of coal mining subsidence on the agricultural soil quality using principal component analysis. Chilean Journal of Agricultural Research, 78(2), 173-182. http://dx.doi.org/10.4067/S0718-58392018000200173 [Google Scholar]
- Hechmi, S., Zoghlami, R. I., Khelil, M. N., Mokni-Tlili, S., Kallel, A., Trabelsi, I., & Jedidi, N. (2022). Cumulative effect of sewage sludge application on soil adsorption complex and nutrient balance: a field study in semi-arid region (Oued Souhil, Tunisia). Arabian Journal of Geosciences, 15, 54. https://doi.org/10.1007/s12517-021-09369-1 1-13 [Google Scholar]
- Hindersah, R., Mauludy, N. M., Sumbada, R. A. R., Sandrawati, A., & Arifin, M. (2024). Soil properties of overburden and topsoil in limestone mining area: A preliminary study. Journal of Degraded & Mining Lands Management, 12(1). 6705. https://doi.org/10.15243/jdmlm.2024.121.6705 [Google Scholar]
- Jahandari, S., Tao, Z., Chen, Z., Osborne, D., & Rahme, M. (2023). Coal wastes: Handling, pollution, impacts, and utilization. In The Coal Handbook (pp. 97-163). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-824327-5.00001-6 [Google Scholar]
- Jiang, H., Fan, G., Zhang, D., Zhang, S., & Fan, Y. (2022). Evaluation of eco-environmental quality for the coal-mining region using multi-source data. Scientific Reports, 12(1), 6623. https://doi.org/10.1038/s41598-022-09795-5 [Google Scholar]
- Klute, A., & Dirksen, C. (1986). Hydraulic conductivity and diffusivity: Laboratory methods. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 687-734. https://doi.org/10.2136/sssabookser5.1.2ed.c28 [Google Scholar]
- Ma, K., Zhang, Y., Ruan, M., Guo, J., & Chai, T. (2019). Land subsidence in a coal mining area reduced soil fertility and led to soil degradation in arid and semi-arid regions. International Journal of Environmental Research and Public Health, 16(20), 3929. https://doi.org/10.3390/ijerph16203929 [Google Scholar]
- McLean, E. O. (1982). Soil pH and lime requirement. Methods of soil analysis: Part 2, Chemical and Microbiological Properties, 9.2.2, Second Edition. https://doi.org/10.2134/agronmonogr9.2.2ed.c12 [Google Scholar]
- Menzies-Pluer, E. G., Schneider, R. L., Morreale, S. J., Liebig, M. A., Li, J., Li, C. X., & Walter, M. T. (2020). Returning degraded soils to productivity: an examination of the potential of coarse woody amendments for improved water retention and nutrient holding capacity. Water, Air, & Soil Pollution, 231, 1-14. https://doi.org/10.1007/s11270-019-4380-x [Google Scholar]
- Mukhopadhyay, S., Masto, R.E., Yadav, A., George, J., Ram, L.C., & Shukla, S.P. (2016). Soil quality index for evaluation of reclaimed coal mine spoil. Science of the Total Environment, 542, 540–550. https://doi.org/10.1016/j.scitotenv.2015.10.035 [Google Scholar]
- Nawaz, M.F., Bourrie, G., & Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 33(2), 291–309. https://doi.org/10.1007/s13593-011-0071-8 [Google Scholar]
- Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods, 5, 961-1010. https://doi.org/10.2136/sssabookser5.3.c34 [Google Scholar]
- Nnabude, P. C., Onunwa, A. O., Ijeoma, E. O., Obalum, S. E., & Madueke, C. O. (2021). Assessment of physical and hydraulic properties of soils of highly excavated site at Agu-Awka, Anambra State, south-eastern Nigeria. Nigerian Journal of Soil and Environmental Research, 20, 10-18 [Google Scholar]
- Obalum, S. E., & Obi, M. E. (2013). Moisture characteristics and their point pedotransfer functions for coarse-textured tropical soils differing in structural degradation status. Hydrological Processes, 27(19), 2731-2735. https://doi.org/10.1002/hyp.9398 [Google Scholar]
- Obalum, S. E., Buri, M. M., Nwite, J. C., Hermansah, Watanabe, Y., Igwe, C. A., & Wakatsuki, T. (2012a). Soil degradation-induced decline in productivity of sub-Saharan African soils: the prospects of looking downwards the lowlands with the sawah eco-technology. Applied and Environmental Soil Science, Volume 2012, Article ID 673926, 10 pages. https://doi.org/10.1155/2012/673926 [Google Scholar]
- Obalum, S. E., Watanabe, Y., Igwe, C. A., Obi, M. E., & Wakatsuki, T. (2012b). Carbon stock in the solum of some coarse-textured soils under secondary forest, grassland fallow and bare footpath in the derived savanna of southeastern Nigeria. Soil Research, 50(2), 157-166. https://doi.org/10.1071/SR11096 [Google Scholar]
- Oguike, P. C., Onwuka, B. M., & Obalum S. E. (2023). Soil organic matter control of water transmission properties of coarse-textured soils under contrasting land-use types in tropical rainforest. International Journal of Hydrology Science and Technology, 16(1), 93-106. https://doi.org/10.1504/IJHST.2022.10046853 [Google Scholar]
- Ogwuche, J. A., & Odoh, D. P. (2013). Assessment of the effect of cessation of coal mining on the socioeconomic condition of Okaba District, Kogi State. Scholarly Journal of Education, 2(4), 46-51. [Google Scholar]
- Oladipo, O. G., Olayinka, A., & Awotoye, O.O. (2014). Ecological impact of mining on soils of South western Nigeria. Environmental and Experimental Biology, 12, 179–186. [Google Scholar]
- Onah, M. C., Obalum, S. E., & Uzoh, I. M. (2021). Vertical distribution of fertility indices and textural properties of a sandy clay loam under short and long-term fallow. International Journal of Agriculture and Rural Development, 24(1), 5697-5703 [Google Scholar]
- Özdemir, N., Demir, Z., & Bülbül, E. (2022). Relationships between some soil properties and bulk density under different land use. Soil Studies, 11(2), 43-50. https://doi.org/10.21657/soilst.1218353 [Google Scholar]
- Page, K. L., Dang, Y. P., & Dalal, R. C. (2020). The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Frontiers in Sustainable Food Systems, 4, 31. https://doi.org/10.3389/fsufs.2020.00031 [Google Scholar]
- Pandey, V. C., Ahirwal, J., Roychowdhury, R., & Chaturvedi, R. (2022). Eco-restoration of mine land. John Wiley & Sons. [Google Scholar]
- Rice, C. W. (2002). Organic matter and nutrient dynamics. Encyclopedia of Soil Science, 2, 1180-1183. [Google Scholar]
- Rouhani, A., Gusiatin, M. Z., & Hejcman, M. (2023). An overview of the impacts of coal mining and processing on soil: Assessment, monitoring, and challenges in the Czech Republic. Environmental Geochemistry and Health, 45(11), 7459-7490. https://doi.org/10.1007/s10653-023-01700-x [Google Scholar]
- Sengupta, M. (2021). Environmental impacts of mining: monitoring, restoration, and control. CRC Press. https://doi.org/10.1201/9781003164012 [Google Scholar]
- Senjobi, B. A. & Ogunkunle, O. A. (2010). Effect of land use on soil degradation and soil productivity decline on Alfisols and Ultisols in Ogun State in Southern Western Nigeria. Agriculturae Conspectus Scientificus, 75(1), 9- 19. [Google Scholar]
- Shah, A. N., Tanveer, M., Shahzad, B., Yang, G., Fahad, S., Ali, S. Bukhari, M.A., Tung, S.A., Hafeez, A., & Souliyanonh, B. (2017). Soil compaction effects on soil health and crop productivity: an overview. Environmental Science and Pollution Research, 24, 10056-10067. https://doi.org/10.1007/s11356-017-8421-y [Google Scholar]
- Tapadar, S. A., & Jha, D. K. (2015). Influence of open cast mining on the soil properties of Ledo Colliery of Tinsukia district of Assam, India. International Journal of Scientific and Research Publications, 5(3), 1-4. [Google Scholar]
- Tyopine A.A., Obalum S.E., Igwe C.A., & Okoye C.O.B. (2022). Spatial distribution and relative enrichment of some upper-group trace elements in rhizosphere of highly anthropized and rapidly developing tropical environment. EQA - International Journal of Environmental Quality, 49(1), 19-33. https://doi.org/10.6092/issn.2281-4485/14554 [Google Scholar]
- Tyopine, A. A., Sikakwe, G. U., Obalum, S. E., & Okoye, C. O. (2020). Relative distribution of rare-earth metals alongside alkaline earth and alkali metals in rhizosphere of agricultural soils in humid tropical environment. Environmental Monitoring and Assessment, 192(8), 504. https://doi.org/10.1007/s10661-020-08437-5 [Google Scholar]
- Ukabiala, M. E., Kolo, J., Obalum, S. E., Amhakhian, S. O., Igwe, C. A., & Hermensah. (2021). Physicochemical properties as related to mineralogical composition of floodplain soils in humid tropical environment and the pedological significance. Environmental Monitoring and Assessment (2021) 193:569. https://doi.org/10.1007/s10661-021-09329-y [Google Scholar]
- Ukpe, A. E., Akhionbare, S. M. O., & Ihejirika, C. E. (2021). The effects of mining activities on the soil quality of Ikwo, Ebonyi State Nigeria. International Journal of Advanced Academic Research, 7(12), 88-99 [Google Scholar]
- Umoren, A. S., Igwenagu, C. M., Ezeaku, P. I., Ezenne, G. I., Obalum, S. E., Gyang, B. D., & Igwe, C. A. (2019). Long-term effects of crude oil spillage on selected physicochemical properties including heavy metal contents of sandy tropical soil. Bulletin of Environmental Contamination and Toxicology, 102, 468-476. https://doi.org/10.1007/s00128-019-02579-0 [Google Scholar]
- Uzoh, I. M., Igwenagu, C. M., & Obalum, S. E. (2020). Effect of land use type on organic C, physical properties and stability indices of soils in Nanka area, southeast Nigeria. Nigerian Journal of Soil Science, 30(1), 62-69. https://doi.org/10.36265/njss.2020.300108 [Google Scholar]
- Wahab, A. A., Alasinrin, S. Y., Abioye, T. A., Agboola, K., & Aina, O. A. (2025). Mining effluent impact on selected soil physical quality parameters in agricultural land Daba, Kwara State, Nigeria. Direct Research Journal of Agriculture and Food Science, 13(1), 1-8. [Google Scholar]
- Xie, J. Y., Xu, M. G., Ciren, Q., Yang, Y., Zhang, S. I., Sun, B. H., & Yang, X. Y. (2015). Soil aggregation and aggregate associated organic carbon and total nitrogen under long-term contrasting soil management regimes in loess soil. Journal of Integrative Agriculture, 14(12), 2405–2416. https://doi.org/10.1016/S2095-3119(15)61205-9 [Google Scholar]
- Yadav, V. K., Gacem, A., Choudhary, N., Rai, A., Kumar, P., Yadav, K. K., Abbas, M.,Khedher, N. B., Awwad, N. S., Barik, D., & Islam, S. (2022). Status of coal-based thermal power plants, coal fly ash production, utilization in India and their emerging applications. Minerals, 12(12), 1503. https://doi.org/10.3390/min12121503 [Google Scholar]
- Yang, L., Wei, T., Li, S., Lv, Y., Miki, T., Yang, L., & Nagasaka, T. (2021). Immobilization persistence of Cu, Cr, Pb, Zn ions by the addition of steel slag in acidic contaminated mine soil. Journal of Hazardous Materials, 412, 125176. https://doi.org/10.1016/j.jhazmat.2021.125176 [Google Scholar]
- Yu, F., Jinman, W., Zhongke, B., & Lucy, R. (2019). Effects of surface coal mining and land reclamation on soil properties. Earth-Science Reviews, 191, 12–25. https://doi.org/10.1016/j.earscirev.2019.02.015 [Google Scholar]
- Zhang, B., Jia, Y., Fan, H., Guo, C., Fu, J., Li, S., Li, M., Liu, B., & Ma, R. (2024). Soil compaction due to agricultural machinery impact: A systematic review. Land Degradation & Development, 35(10), 3256-3273. https://doi.org/10.1002/ldr.5144 [Google Scholar]
- Zhang, J., Wei, R., & Guo, Q. (2023). Impacts of mining activities on the spatial distribution and source apportionment of soil organic matter in a karst farmland. Science of the Total Environment, 882, 163627. https://doi.org/10.1016/j.scitotenv.2023.163627 [Google Scholar]
- Zhang, P., Cui, Y., Zhang, Y., Jia, J., Wang, X., & Zhang, X. (2016). Changes in soil physical and chemical properties following surface mining and reclamation. Soil Science Society of America Journal, 80(6), 1476-1485. https://doi.org/10.2136/sssaj2016.06.016 [Google Scholar]

