Evaluation of Rice Landraces for Yield and Related Traits Under Rainfed Conditions in Nepal

Open Access
Download PDF
AgroEnvironmental Sustainability
Dipak Khanal , Dhurba Banjade , Narayan Prasad Belbase , Bishnu Datta Pant , Adhiraj Kunwar , Dipak Raj Bist , Dipesh Chand Yadav , Arati Dhami

Abstract

The primary staple crop in Nepal in terms of production and cultivated area is rice (Oryza sativa L.). This study evaluates the agronomic performance of fifteen genotypes of rice landraces under rainfed conditions in Krishnapur municipality, Kanchanpur, Nepal, during the rainy season of 2023. The experiment was conducted on an alpha lattice design with two replications. The study focused on yield and yield-related traits, including tiller per plant, plant height, panicle length, and grain length and width. ANOVA showed a significant variation among different genotypes for various traits. Rai Manuwa showed the highest tiller per plant (9), plant height (146 cm), panicle length (27.5 cm), and grain yield per plant (16.63 gm.), indicating greater drought adaptability. However, Sorali showed the lowest performance across most traits, indicating poor drought tolerance. The yield trait association analysis revealed a strong positive correlation between the total grain yield, average tiller per plant, and average panicle length. Therefore, yield could be increased by selecting these traits. Using the cluster analysis process, fifteen different genotypes of rice landraces were grouped into four groups. Genotypes in Cluster 2 (Rai Manuwa, Sarju) and Cluster 3 (Taichin) were identified as potential genotypes and tiller per plant, panicle length, and grain yield as potential traits for the breeding programs focused on improving drought tolerance.

Keywords

agronomic performance cluster analysis grain yield rainfed condition rice landraces

References

  1. Acharya, S., Ghimire, S., Thapa, R., Bhattarai, P., & Chhetri, B. P. (2024). Evaluation of spring season local and improved rice genotypes on growth, yield, and yield attributing characters in Gorkha District, Nepal. Journal La Lifesci, 5(2), 109–125. [Google Scholar]
  2. Adhikari, B. N., Joshi, B. P., Shrestha, J., & Bhatta, N. R. (2018). Genetic variability, heritability, genetic advance and correlation among yield and yield components of rice (Oryza sativa L.). Journal of Agriculture and Natural Resources, 1(1), 149–160. [Google Scholar]
  3. Ata-Ul-Karim, S. T., Begum, H., Lopena, V., Borromeo, T., Virk, P., Hernandez, J. E., Gregorio, G. B., Collard, C. Y., & Kato, Y. (2022). Genotypic variation of yield-related traits in an irrigated rice breeding program for tropical Asia. Crop and Environment, 1(3), 173–181. [Google Scholar]
  4. Banjade, D., Khanal, D., Banstola, R., Regmi, P., & Yadav, D. C. (2024). Farmers’ Perception and Adaptation Strategies on Climate Change and Variability in Rice Production in Sarlahi, Nepal. AgroEnvironmental Sustainability, 2(4), 197–204. [Google Scholar]
  5. Banjade, D., Khanal, D., Shrestha, A., & Shrestha, K. (2023). Effects of Seedling and Plant Spacing on the System of Rice Intensification (SRI) for Spring Rice (Oryza sativa L. Chaite 2). AgroEnvironmental Sustainability, 1(3), 229–235. [Google Scholar]
  6. Bouman, B. A. M., Peng, S., Castañeda, A. R., & Visperas, R. M. (2005). Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management, 74(2), 87–105. [Google Scholar]
  7. Chakraborti, R., Davis, K. F., DeFries, R., Rao, N. D., Joseph, J., & Ghosh, S. (2023). Crop switching for water sustainability in India’s food bowl yields co-benefits for food security and farmers’ profits. Nature Water, 1(10), 864–878. [Google Scholar]
  8. Chang, S., Chang, T., Song, Q., Wu, J., Luo, Y., Chen, X., Zhu, Xin-Guang, & Deng, Q. (2020). Architectural and physiological features to gain high yield in an elite rice line YLY1. Rice, 13(1), 60. [Google Scholar]
  9. Choudhary, D., Banskota, K., Khanal, N. P., McDonald, A. J., Krupnik, T. J., & Erenstein, O. (2022). Rice subsector development and farmer efficiency in Nepal: Implications for further transformation and food security. Frontiers in Sustainable Food Systems, 5, 740546. https://doi.org/10.3389/fsufs.2021.740546 [Google Scholar]
  10. Crowell S, Korniliev P, Falcão A, Ismail A, Gregorio G, Mezey J, & McCouch, S. (2016). Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Nature Communication, 7(1), 10527. [Google Scholar]
  11. Gautam, D., Kandel, B. P., & Adhikari, B. B. (2018). Performance of rice genotypes in Western Mid Hill of Nepal. Journal of Plant Breeding and Genetics, 6(3), 111–116. [Google Scholar]
  12. Ghimire, R., Wen-chi, H., & Shrestha, R. B. (2015). Factors affecting adoption of improved rice varieties among rural farm households in Central Nepal. Rice Science, 22(1), 35–43. [Google Scholar]
  13. Gurung, G., Seyie, K., Sharma, M. B., Kolom, R., & Ozukum, C. (2018). Genetic variation on upland rice (Oryza sativa L.) landraces of Nagaland. Indian Journal of Hill Farming, 31(1), 30-34. [Google Scholar]
  14. Harisha, R., Bhadru, D., Bhargava, K., Vanisri, S., Shankar, V. G., Balakrishnan, A. P., Gowda, M. M., & Singhal, S. (2022). Assessment of variability and genetic diversity for elite rice (Oryza sativa L.) genotypes of Telangana and Andhra Pradesh. International Journal of Environment and Climate Change, 12(1), 3612–3622. [Google Scholar]
  15. Hasan, N., Ahmad, F., Ramachandran, K., & Rafii, M. Y. (2021). Genetic diversity of selected Malaysian mega rice varieties based on agro-morphological traits. Malaysian Journal of Biochemistry and Molecular Biology, 2, 1-9. [Google Scholar]
  16. Hussain, T., Hussain, N., Ahmed, M., Nualsri, C., & Duangpan, S. (2021). Responses of lowland rice genotypes under terminal water stress and identification of drought tolerance to stabilize rice productivity in Southern Thailand. Plants, 10(12), 2565. [Google Scholar]
  17. Ishimaru, T., Sasaki, K., Lumanglas, P. D., Cabral, C. L. U., Ye, C., Yoshimoto, M., Kumar, Arvind., & Henry, A. (2022). Effect of drought stress on flowering characteristics in rice (Oryza sativa L.): A study using genotypes contrasting in drought tolerance and flower opening time. Plant Production Science, 25(3), 359–370. [Google Scholar]
  18. Jasmin, A. S., Prasanth, H. P., Ramchander, S., Kumar, D. P., Devasena, N., Naveenkumar, R., Thankappan, Sugitha., & Kingsly, N. B. J. (2024). Assessment of variability parameters and diversity of panicle architectural traits associated with yield in rice (Oryza sativa L.). Plant Science Today, 11(1), 109–118. [Google Scholar]
  19. Kang, H., Sridhar, V., Mainuddin, M., & Trung, L. D. (2021). Future rice farming threatened by drought in the Lower Mekong Basin. Scientific Reports, 11(1), 9383. [Google Scholar]
  20. Karim, D., Siddique, M. N. A., Sarkar, U., Hasnat, Z., & Sultana, J. (2014). Phenotypic and genotypic correlation co-efficient of quantitative characters and character association of aromatic rice. Journal of Bioscience and Agriculture Research, 1(1), 34–46. [Google Scholar]
  21. Kesh, H., & Ram, K. (2022). Performance of basmati rice (Oryza sativa L.) genotypes under different crop establishment methods. Genetika, 54(1), 27–42. [Google Scholar]
  22. Khanal, D., Bastakoti, B., & Banjade, D. (2024a). Impacts of submergence stress on rice plants and its adaptation: A review. Archives of Agriculture and Environmental Science, 9(3), 626–631. [Google Scholar]
  23. Khanal, D., Bastakoti, B., & Banjade, D. (2024b). A Review: Elevated Nighttime Temperature Impacts on Rice. International Journal of Plant & Soil Science, 36(8), 437–446. [Google Scholar]
  24. Khatun, S., Mondal, M. A., Khalil, M. I., Roknuzzaman, M., & Mollah, M. I. (2020). Growth and yield performance of six Aman rice varieties of Bangladesh. Asian Research Journal of Agriculture, 1, 1–7. [Google Scholar]
  25. Kishore, N., Srinivas, T., Nagabhushanam, U., Pallavi, M., & Sameera, S. (2015). Genetic variability, correlation and path analysis for yield and yield components in promising rice (Oryza sativa L.) genotypes. SAARC Journal of Agriculture, 13(1), 99–108. [Google Scholar]
  26. Kumbhar, S. D., Kulwal, P. L., Patil, J. V., Sarawate, C. D., Gaikwad, A. P., & Jadhav, A. S. (2015). Genetic diversity and population structure in landraces and improved rice varieties from India. Rice Science, 22(3), 99–107. [Google Scholar]
  27. Martinez-Eixarch, M., Català M. del M., Tomàs, N., Pla, E., & Zhu, D. (2015). Tillering and yield formation of a temperate Japonica rice cultivar in a Mediterranean rice agrosystem. Spanish Journal of Agricultural Research, 13(4), 1-10. [Google Scholar]
  28. Ministry of Agriculture and Livestock Development. (2023). Statistical information on Nepalese agriculture. Available online: https://www.moald.gov.np/publication/AgricultureStatistics (accessed on 05 April 2025). [Google Scholar]
  29. Monaco, F., Sali, G., Ben Hassen, M., Facchi, A., Romani, M., & Valè, G. (2016). Water management options for rice cultivation in a temperate area: A multi-objective model to explore economic and water saving results. Water, 8(8), 336. [Google Scholar]
  30. Newton, A. C., Akar, T., Baresel, J. P., Bebeli, P. J., Bettencourt, E., Bladenopoulos, K. V., Czembor, J. H., et al. (2011). Cereal landraces for sustainable agriculture. A review. Agronomy for Sustainable Development, 30, 237-269. [Google Scholar]
  31. Parimala, G., Raju, C. H. D., Rao, L. V. S., Umamaheswari, K., & Krishna, K. (2023). Correlation and path coefficient analysis for yield, quality and their component traits in rice (Oryza sativa L.). International Journal of Environment and Climate Change, 13(10), 3782–3794. [Google Scholar]
  32. Perween, S., Kumar, A., Singh, S. P., Kumar, M., & Kumar, R. R. (2020). Genetic variability parameters for yield and yield related traits in rice (Oryza sativa L.) under irrigated and drought stress condition. International Journal of Current Microbiology and Applied Sciences, 9(2), 1137–1143. [Google Scholar]
  33. Poudel, A., Chaudhary (Dhami), M. S., Adhikari, A., & Shrestha, J. (2023). Detection of superior rice genotypes through evaluating growth and yield parameters. Nepal Agriculture Research Journal, 15(1), 66–74. [Google Scholar]
  34. Romana, G. S. (2014). Direct seeded rice versus normal transplanted rice: An economic comparison. Indian Journal of Economics and Development, 10(2), 117. [Google Scholar]
  35. Roy, S. K., Ali, M. Y., Jahan, M. S., Saha, U.K., Hamdani, M. S. A., Hasan, M. M. & Alam, M. A. (2014). Evaluation of growth and yield attributing characteristics of indigenous Boro rice varieties. Life Science Journal, 11(4), 1-10. [Google Scholar]
  36. Sharma, A., Sharma, S., Yadav, P. K., & Sodari, B. (2021). Direct seeded rice and its prospects in Nepal: A review. Turkish Journal of Agriculture - Food Science and Technology, 9(12), 2355–2364. [Google Scholar]
  37. Shrestha, J., Subedi, S., Kushwaha, U. K. S., & Maharjan, B. (2021). Evaluation of rice genotypes for growth, yield and yield components. Journal of Agriculture and Natural Resources, 4(2), 339–346. [Google Scholar]
  38. Singh, N., Singh, B., Rai, A. B., Dubey, A. K., & Rai, A. (2012). Impact of direct seeded rice (DSR) for resource conservation. Indian Research Journal of Extension Education, 2, 2010–2013. [Google Scholar]
  39. Tadesse Girma, B., Amanuel Kitil, M., Gebre Banje, D., Mengistu Biru, H., & Bayisa Serbessa, T. (2018). Genetic variability study of yield and yield related traits in rice (Oryza sativa L.) genotypes. Advances in Crop Science and Technology, 6(4), 1-10. [Google Scholar]
  40. Vikram, P., Swamy, B. P. M., Dixit, S., Singh, R., Singh, B. P., Miro, B., Kohli, A., Henry, A., Singh, N. K., & Kumar, A. (2015). Drought susceptibility of modern rice varieties: An effect of linkage of drought tolerance with undesirable traits. Scientific Reports, 5(1), 14799. [Google Scholar]
  41. Vitrakoti, D., Aryal, S., Rasaily, S., Ojha, B. R., Kharel, R., & Sapkota, M. (2017). Study on genotypic response and correlation analysis of the yield and yield attributing traits of different barley (Hordeum vulgare) genotypes. International Journal of Applied Sciences and Biotechnology, 4(4), 529–536. [Google Scholar]
  42. Yadav, S. P. S., Mehata, D. K., Bhattarai, S., Bhandari, S., Ghimire, N. P., Majhi, S. K., Chaudhary, P., & Bhujel, S. (2023). Genetic variability of panicle architecture traits in different rice accessions under the eastern terai conditions of Nepal. Cogent Food & Agriculture, 9(1), 1-10. [Google Scholar]

Similar Articles

1-10 of 59

You may also start an advanced similarity search for this article.