Abstract
Lignocellulosic materials contain two major sugar macromolecules, cellulose and hemicellulose, and polyphenolic lignin. During pulping, lignin and hemicellulose are broken down into smaller molecules such as organic acids, and removed in the black liquor, leaving cellulose fibers for papermaking. Lignocellulose consists of approximately 28–35% hemicelluloses, which are lost during the pulping process in black liquor and are an important source of sugars that can be used to produce bioethanol as a liquid fuel. The hemicellulosic sugars from the Populus deltoides (poplar) lignocellulosic biomass were partially extracted keeping in mind that it does not affect the properties of paper beyond acceptable limits, further converting these extracted sugars by fermentation to bioethanol, followed by pulping the residual biomass and papermaking and determining pulping and papermaking properties. With the increasing demand for lignocellulosic biomass by various industries, an integrated biorefinery approach for maximum utilization of its chemical components with minimum degradation is necessary in the future. The maximum bioethanol yield was found to be 3.58 g/L. On manufactured paper sheets, the mechanical properties tensile index and tear index of pre-extracted biomass were observed as 19.23 Nm/g and 3.5 mNm2/g and slightly lower against the control 21.34 Nm/g and 4.0 mNm2/g. The main objective of the present study is to recover reducing sugars before the pulping process for bioethanol production and to further utilize the remaining residue for papermaking without disturbing its fiber integrity.
Keywords
References
- Agbogbo, F. K., & Coward-Kelly G. (2008). Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnology Letters, 30(9), 1515-1524. https://doi.org/10.1007/s10529-008-9728-z [Google Scholar]
- Antczak, A., Świerkosz, R., Szeniawski, M., Marchwicka, M., Akus,Szylberg. F., Przybysz, P., & Zawadzki J. (2019). The comparison of acid and enzymatic hydrolysis of pulp obtained from poplar wood (Populus sp.) by the Kraft method. Drewno: Prace Naukowe, Doniesienia, Komunikaty, 62(203), 53-66. https://doi.org/10.15376/biores.16.3.5618-5627 [Google Scholar]
- Bajpai, P. (2021). Pretreatment of Lignocelluloses Biomass for Bioethanol Production. In: Developments in Bioethanol. Green Energy and Technol. Springer, Singapore. pp. 111-144. https://doi.org/10.1007/978-981-15-8779-5_6 [Google Scholar]
- Caputi, A. J., Ueda, M., & Brown, T. (1968). Spectrophotometric determination of ethanol in wine, American Journal of Enology and Viticulture, 19, 160-165. https://doi.org/10.5344/ajev.1968.19.3.160 [Google Scholar]
- Cavalaglio, G., Cotana, F., Nicolini, A., Coccia, V., Petrozzi, A., Formica, A., & Bertini, A. (2020). Characterization of Various Biomass Feedstock Suitable for Small-Scale Energy Plants as Preliminary Activity of Biocheaper Project. Sustainability, 12(16), 6678. https://doi.org/10.3390/su12166678 [Google Scholar]
- Chandel, A. K., Da, Silva., S. S., & Singh., O. V. (2013). Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering toward white biotechnology. BioEnergy Research, 6(1), 388-401. https://doi.org/1010.1007/s12155-012-9241-z [Google Scholar]
- Dubey, A. K., Gupta, P. K., & Garg, N. (2015). Utilization of glucose and xylose by Pichia stipitis and Saccharomyces cerevisiae for ethanol fermentation. Journal of Innovative Biology, 2(1), 222-225. [Google Scholar]
- Dubey, A. K., Naithani, S., Joshi, G., & Gupta, P. K. (2009). Effect of Pichia stiptis and Saccharomyces cerevisiae for the production of eco-friendly fuel – bioethanol. In: IV National Forestry Conference, Forest Research Institute, Dehradun (Uttarakhand), India. [Google Scholar]
- Esmaeili, S. A. H., Szmerekovsky, J., Sobhani, A., Dybing, A., & Peterson, T. O. (2020). Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers. Energy Policy, 138, 111222. https://doi.org/10.1016/j.enpol.2019.111222 [Google Scholar]
- Fatma, S., Hameed, A., Noman, M., Ahmed, T., Shahid, M., Tariq, M., & Tabassum, R. (2018). Lignocellulosic biomass: A sustainable bioenergy source for the future. Protein & Peptide Letters, 25(2), 148-163. https://doi.org/10.2174/0929866525666180122144504 [Google Scholar]
- Garmaroody, E. R., Resalati, H., Fardim, P., Torshizi, H. J., Rudi, H., & Petroudy, S. R, J. (2016). Trametes versicolor Pretreatment of Poplar Chips for Upgrading Kraft Pulp. Cellulose Chemistry Technology, 50(9-10), 1035-1045. [Google Scholar]
- Germec, M., Kartal, F. K., Bilgic, M., Ilgin, M., Ilhan, E., Güldali, H., & Turhan, I. (2016). Ethanol production from rice hull using Pichia stipitis and optimization of acid pretreatment and detoxification processes. Biotechnology Progress, 2(4), 872-882. https://doi.org/10.1002/btpr.2275 [Google Scholar]
- İnan, B., & Özçimen, D. (2019). A comparative study of bioprocess performance for improvement of bioethanol production from macroalgae. Chemical and Biochemical Engineering Quarterly, 33(1), 133-140. https://doi.org/10.15255/CABEQ.2018.1499 [Google Scholar]
- Jani, S. M., Rushdan, I., Saad, M. J., & Ibrahim, R. (2016). Mechanical properties of beating pulp and paper from rice straw. Journal of Tropical Agriculture, 44(1), 103-109. [Google Scholar]
- Jones, E. R. (1953). Jones reagent. Journal of the Chemical Society, 457, 2548–3019. [Google Scholar]
- Kotter, P., & Ciriacy, M. (1993). Xylose fermentation by Sacharomyces cerevisiae. Applied Microbiology and Biotechnology, 38, 776-783. https://doi.org/10.1007/bf00167144 [Google Scholar]
- Ladisch, M. R., Lin, K. W., Voloch, M., & Tsao, G. T. (1983). Process considerations in the enzymatic hydrolysis of biomass. Enzyme and Microbial Technology, 5(6), 82-102. https://doi.org/10.1016/0141-0229(83)90042-x [Google Scholar]
- Lamuela-Raventós., R. M. (2018). Folin–Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In: Measurement of Antioxidant Activity & Capacity Recent Trends and Applications, John Wiley & Sons Ltd. pp. 107-117. https://doi.org/10.1002/9781119135388.ch6 [Google Scholar]
- Luo, L., Yuan, X., Zhang, S., Wang, X., Li, M., & Wang, S. (2021). Effect of Pretreatments on the Enzymatic Hydrolysis of High-Yield Bamboo Chemo-Mechanical Pulp by Changing the Surface Lignin Content. Polymers, 13(5), 787. https://doi.org/10.3390/polym13050787 [Google Scholar]
- Malik, S., Rana, V., Joshi, G., Gupta, P. K., & Sharma, A. (2020). Valorization of Wheat Straw for the Paper Industry: Pre-extraction of Reducing Sugars and Its Effect on Pulping and Papermaking Properties. ACS Omega, 5(47), 30704-30715. https://doi.org/10.1021/acsomega.0c04883 [Google Scholar]
- Miller, G. L. (1959). Use of Dinitrosalicylic acid for determination of reducing sugar. Analytical Chemistry, 31, 426-429. https://doi.org/10.1021/ac60147a030 [Google Scholar]
- Obi Reddy. K., Maheswari. C. M., Shukla, M., & Muzenda, E. (2014). Preparation, chemical composition, characterization, and properties of Napier grass paper sheets. Separation Science and Technology, 49(10), 1527-1534. https://doi.org/10.1080/01496395.2014.893358 [Google Scholar]
- Oriez, V., Peydecastaing, J., & Pontalier, P. Y. (2020). Lignocellulosic biomass mild alkaline fractionation and resulting extract purification processes: conditions, yields, and purities. Clean Technology, 2(1), 91-115. https://doi.org/10.3390/cleantechnol2010007 [Google Scholar]
- Purohit, P., Dhar, S. (2018). Lignocellulosic biofuels in India: current perspectives, potential issues and future prospects. Aims Energy, 6(3), 453-486. https://doi.org/10.3934/energy.2018.3.453 [Google Scholar]
- Saeed, A., Jahan, M. S., Li, H., Liu, Z., Ni, Y., & van Heiningen. A. (2012). Mass balances of components dissolved in the pre-hydrolysis liquor of kraft-based dissolving pulp production process from Canadian hardwoods. Biomass & Bioenergy, 39, 14-19. https://doi.org/10.1016/j.biombioe.2010.08.039 [Google Scholar]
- Sannigrahi, P., Ragauskas, A. J., & Tuskan, G. (2010). Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels, Bioproducts and Biorefining, 4(2), 209-226. https://doi.org/10.1002/bbb.206 [Google Scholar]
- Sim, S. J., Yong, S. H., Park, D., Choi, E., Seol, Y., Song, H. J., & Choi, M. S. (2020). Influence of inorganic salts on biomass production, biochemical composition, and bioethanol production of Populus alba. iForest-Biogeosciences and Forestry, 13(6), 566. https://doi.org/10.3832/ifor3438-013 [Google Scholar]
- Tarasov, D., Leitch, M., & Fatehi, P. (2018). Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnology Biofuels, 11(1), 1-28. https://doi.org/10.1186/s13068-018-1262-1 [Google Scholar]
- Van Thanh, T., Thao, N. T. P., Hieu, T. T., Braunegg, S., Schnitzer, H., Braunegg, G., & Le, S. (2020). An integrated eco-system for pollution prevention and greening the production chain of small-scale rice-paper production–A case study from Vietnam. Journal of Cleaner Production, 245, 118785. https://doi.org/10.1016/j.jclepro.2019.118785 [Google Scholar]
- Vena, P. F., Brienzo, M., García-Aparicio, M., Görgens, J. F., & Rypstra, T. (2015). Dilute sulphuric acid extraction of hemicelluloses from Eucalyptus grandis and its effect on kraft and soda-AQ pulp and handsheet properties. Cellulose Chemistry and Technology, 49, 819-832. https://doi.org/10.1515/hf-2012-0197 [Google Scholar]
- Woiciechowski, A. L., Neto, C. J. D., de, Souza. Vandenberghe, L, P., de., Carvalho, Neto., D. P. D., Sydney, A. C. N., Letti, L, A., Torres, L. A. Z., & Soccol, C. R. (2020). Lignocellulosic biomass: Acid and alkaline pre-treatments and their effects on biomass recalcitrance–Conventional processing and recent advances. Bioresource Technolology, 304, 122848. https://doi.org/10.1016/j.biortech.2020.122848 [Google Scholar]
- Yuan, Z., Wen, Y., Kapu, N. S., Beatson, R., & Martinez, D. M. (2017). A biorefinery scheme to fractionate bamboo into high-grade dissolving pulp and ethanol. Biotechnology Biofuels, 10(1), 1-16. https://doi.org/10.1186/s13068-017-0723-2 [Google Scholar]

