Toxicological Effects of Mercury-Induced Biochemical Alterations in Curry Leaves (Murraya koenigii) Plants

Mani Vijay 1 , Gnanamoorthy Vijayasanthi 2 , Kassim MohammedKhaleef 3

1   Department of Biochemistry, School of Allied Health Sciences, Sri Lakshmi Narayana Institute of Medical Sciences, Puducherry 605502, India https://orcid.org/0009-0005-1970-1039
2   Department of Biochemistry, Ponnaiyah Ramajayam Institute of Science & Technology, Puducherry 605007, India
3   Department of Biochemistry, Ponnaiyah Ramajayam Institute of Science & Technology, Puducherry 605007, India

✉ Author responsible for correspondence: This information is protected, please see article PDF.

doi 10.59983/s2025030102

doi

Abstract

Heavy metals, including mercury (Hg), accumulate in the environment via atmospheric deposition, aquatic transport, and terrestrial pathways, eventually settling in soil and sediments. Once these metals become bioavailable, they pose significant ecological and toxicological risks. Upon exposure, plants absorb them, leading to harmful agronomic, physiological, and biochemical effects. The present study aims to assess the toxicological effects of mercury on the biochemical alterations in Murraya koenigii (curry leaves) plants. M. koenigii plants were assigned to four groups: Group 1 (control) in uncontaminated soil, and Groups 2, 3, and 4 exposed to 50 mg, 100 mg, and 200 mg of Hg, respectively. All plants were kept under controlled environmental conditions to promote optimal growth. The results revealed that elevated mercury concentrations significantly impaired critical growth parameters, including seed germination, root and shoot length, fresh and dry weight, and vigour index, all of which reflect suppressed plant growth and productivity. Biochemical analysis further demonstrated substantial reductions in primary metabolites, such as carbohydrates and proteins, with the most pronounced decreases observed at higher mercury concentrations. These alterations suggest that Hg-induced oxidative stress causes cellular damage, disruption of nutrient assimilation, and disturbances in enzyme activity. Additionally, significant reductions in chlorophyll a, chlorophyll b, and total chlorophyll content were observed, further indicating impaired photosynthetic capacity. Overall, the findings underscore the detrimental effects of mercury on plant metabolic processes, highlighting its potential to cause long-term growth inhibition and metabolic dysfunction, with broader implications for plant productivity, nutrient cycling, and ecosystem health.

Keywords:

curry leaves, heavy metals, mercury, Murraya koenigii, soil pollution

Downloads

Download data is not yet available.

References

Abdul-Baki, A. A., & Anderson, J. D. (1973). Vigor Determination in Soybean Seed by Multiple Criteria. Crop Science, 13, 630-633. http://dx.doi.org/10.2135/cropsci1973.0011183X001300060013x

Al-Khateeb, W. M., Muhaidat, R. M., Odat, N., Sawaie, A., Lahham, J., & ElOqlah, A. (2010). Interactive effects of salinity, light and temperature on seed germination of Zygophyllum simplex L. (Zygophyllaceae) in Jordan. International Journal of Integrative Biology, 10(1): 9.

Angon, P. B., Islam, M. S., Kc, S, Das, A., Anjum, N, Poudel, A., & Suchi, S. A. (2024). Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon, 10(7), e28357. https://doi.org/10.1016/j.heliyon.2024.e28357

Anjitha K. S., Sameena, P. P., & Puthur J. T. (2021). Functional aspects of plant secondary metabolites in metal stress tolerance and their importance in pharmacology. Plant Stress, 2,100038. https://doi.org/10.1016/j.stress.2021.100038

Aponte, H., Meli, P., Butler, B., Paolini, J., Matus, F., Merino, C., Cornejo, P., Kuzyakov, Y., Li, J, Yu, H, & Luan, Y. (2015). Meta-analysis of heavy metal effects on soil enzyme activities International Journal of Environmental Research and Public Health, 737, 14958-73. https://doi.org/10.1016/j.scitotenv.2020.139744

Arnon, D. (1949). Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-15. https://doi.org/10.1104/pp.24.1.1

Bae, J., Mercier, G., Watson, A. K., & Benoit, D. L. (2014). Seed Germination Test for Heavy Metal Phytotoxicity Assessment. Canadian Journal of Plant Science, 94, 1519-1521. https://doi.org/10.4141/cjps-2014-018

Bahira, S., Behera, S., & Puhan, P. (2018). Phytoremediation of chromium by chickpea (Ciecer arietinum L.) and its toxic effect. Remarking An Analisation, 3(1), 80-85.

Bekim, G., Liridon, B., Rame, V., & Metin, T. (2024). Chlorophyll biosynthesis suppression, oxidative level and cell cycle arrest caused by Ni, Cr and Pb stress in maize exposed to treated soil from the Ferronikel smelter in Drenas, Kosovo. Plant Stress, 11, 100379. https://doi.org/10.1016/j.stress.2024.100379

Birari, R., Javia, V., & Bhutani, K.K. (2010). Antiobesity and lipid lowering effects of Murraya koenigii (L.) Spreng leaves extracts and mahanimbine on high fat diet induced obese rats. Fitoterapia, 81(8), 1129-33. https://doi.org/10.1016/j.fitote.2010.07.013

Cavallini, A., Natali, L., Durante, M., & Maserti, B. (1999). Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. Science of the Total Environment, 243-244, 119–127. https://doi.org/10.1016/S0048-9697(99)00367-8

Chen, Y. E., Wu, N., Zhang, Z. W., Yuan, M., & Yuan, S. (2019). Perspective of monitoring heavy metals by moss visible chlorophyll fluorescence parameters. Frontiers in Plant Science. 10, 1-10. https://doi.org/10.3389/fpls.2019.00035

Cheng, X., Liu, X., Liu, F., Yang, Y., & Kou, T. (2024). Facing Heavy Metal Stress, What Are the Positive Responses of Melatonin in Plants: A Review. Agronomy, 14(9), 2094. https://doi.org/10.3390/agronomy14092094

Elina, M., Arnab, K. G., Debosree, G., & Mukherjeea D. (2012). Protective effect of aqueous Curry leaf (Murraya koenigii) extract against cadmium-induced oxidative stress in rat heart. Food and Chemical Toxicology, 50(5), 1340-1353. https://doi.org/10.1016/j.fct.2012.01.048

Fraire-Velazquez, S., & Emmanuel, V. (2013). Abiotic stress in plants and metabolic responses. In: Vahdati K, Leslie C (eds) Abiotic stress - plant responses and applications in agriculture. London: InTech, pp. 13. https://doi.org/10.5772/54859

Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Micro-biology, 156, 609-643. https://doi.org/10.1099/mic.0.037143-0

Ghimire, A., & Magar, N. (2018). Thin Layer Drying Kinetics Modelling of Curry Leaves (Murraya koenigii L.) in Cabinet Dryer. Himalayan Journal of Science and Technology, 2, 53-58. https://doi.org/10.3126/hijost.v2i0.25844

Ghori, N. H, Ghori, T., Hayat, M. Q, Imadi, S.R., Gul, A., Altay, & Ozturk, V. M. (2019). Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 16, 1807-1828. https://doi.org/10.1007/s13762-019-02215-8

Godzik, B. (1993). Heavy metals content in plants from zinc dumps and reference area. Polish Botanical Studies, 5, 113-132.

Gupta, S., George, M., Singhal, M., Sharma, G.N., & Grag, V. (2010). Leaves extract of Murraya koenigii Linn for anti-inflammatory and analgesic activity in animal models. Journal of Advanced Pharmaceutical Technology and Research, 1(1), 68-77.

Hafeez, A., Rasheed, R., Ashraf, M. A., Qureshi, F .F., Hussain, I., & Iqbal, M. (2023). Effect of heavy metals on growth, physiological and biochemical responses of plants. In Plants and Their Interaction to Environmental Pollution, pp. 139-159. https://doi.org/10.1016/b978-0-323-99978-6.00006-6

Hasan, S. A., Fariduddin, B. & Ali, S. (2009). Hayat and A. Ahmad: Cadmium: Toxicity and tolerance in plants. Journal of Environmental Biology, 30, 165-174.

Hedge, J. E, & Hofreiter, B. T. (1962). In Carbohydrate chemistry 17 (Eds Whistler RL and Be Miller JN). Academic press. New York.

Hurmat R. S., & Bansal, G. (2020). Does abiotic stresses enhance the production of secondary metabolites? A review. The Pharma Innovation Journal, 9(1), 412-422. https://doi.org/10.22271/tpi.2020.v9.i1g.4315

Huybrechts, M., Hendrix, S., Bertels, J., Beemster, G. T. S., Vandamme, D., & Ann Cuypers, A. (2020). Spatial analysis of the rice leaf growth zone under controlled and cadmium-exposed conditions. Environmental and Experimental Botany, 177, 104120. https://doi.org/10.1016/j.envexpbot.2020.104120

Igara, C. E., Omoboyowa, D. A., Ahuchaogu, A. A., Orji, N. U., & Ndukwe, M. K. (2016). Phytochemical and nutritional profile of Murraya koenigii (Linn) Spreng leaf. Journal of Pharmacognosy and Phytochemistry, 5(5), 7-9.

Israr, M., Sahi, S., Datta, R., & Sarkar D. (2006). Bioaccumulation and physiological effects of mercury in Sesbania drummondii, Chemosphere. 65(4), 591–598. https://doi.org/10.1016/j.chemosphere.2006.02.016

Jain, V., Momin, M., & Laddha, K. J. (2012). Murraya Koenigii: An Updated Review. International Journal of Ayurvedic and Herbal Medicine, 2(4), 607-627.

Kim, R. Y., Yoon, J. K., Kim, T. S., Yang, J. E., Owens, G., & Kim, K. R. (2015). Bioavailability of heavy metals in soils: Definitions and practical implementation-A critical review. Environmental Geochemistry and Health, 37, 1041. https://doi.org/10.1007/s10653-015-9695-y

Kumar, V., Suthar, S., Bandyopadhyay, A., Tekale, S., & Dhawan, S. (2012). A Review on Traditional Indian Folk Medicinal Herb: Murraya koenigii. World Journal of Pharmacy and Pharmaceutical Sciences, 262(1), 405.

Lehmann M., Laxa M., Sweetlove L. J., Fernie A. R., & Obata, T. (2012). Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress. Metabolomics. 8, 143-153. https://doi.org/10.1007/s11306-011-0296-1

Liu, Y., & Wiren, N. (2022). Integration of nutrient and water availabilities via auxin into the root developmental program. Current Opinion in Plant Biology, 65, 102117. https://doi.org/10.1016/j.pbi.2021.102117

Lodenius, M. (2013). Use of plants for biomonitoring of airborne mercury in contaminated areas. Environmental Research, 125, 113-123. https://doi.org/10.1016/j.envres.2012.10.014

Lokhande, V. H., Patade, V. Y., Srivastava, S., Suprasanna, P., Shrivastava, M., & Awasthi, G. (2020). Copper accumulation and biochemical responses of Sesuvium portulacastrum (L.). Materials Today: Proceedings, 31, 679-684. https://doi.org/10.1016/j.matpr.2020.07.117

Lowry, O. H., Roseborough, N. J., Farr, A. L., & Randall, R. L. (1951). Protein measurement with Folin-phenol reagent. Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6

Manara, A. (2012). Plant Responses to heavy metal toxicity. In Plants and Heavy metals. pp. 27-53. https://doi.org/10.1007/978-94-007-4441-7_2

Moosavi, S. A., Gharineh, M. H., Afshari, R. T., & Ebrahimi, A. (2012). Effects of Some Heavy Metals on Seed Germination Characteristics of Canola (Barassicanapus), Wheat (Triticumaestivum) and Safflower (Carthamustinctorious) to Evaluate Phytoremediation Potential of These Crops. Journal of Agricultural science, 4(9), 11-19. https://doi.org/10.5539/jas.v4n9p11

Nguyen, T. Q., Sesin, V., Kisiala, A., & Neil Emery, R. J. (2020). Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. Environmental Toxicology and Chemistry, 40(1), 7-22. https://doi.org/10.1002/etc.4909.

Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., & Streets, D.G. (2010). Global Mercury Emissions to the Atmosphere from Anthropogenic and Natural Sources. Atmospheric Chemistry and Physics, 10, 5951–5964. https://doi.org/10.5194/acp-10-5951-2010

Rageeb, M. D., Usman, M. D., & Barhate, S. D. (2012). Phytochemical evaluation and effect of antipyretic activity on Murraya koenigii Spreng. Leaves extract. International Journal of Pharmaceutical and Chemical Sciences. 1(1), 231-236.

Rashid, A., Schutte, B. J., Ulery, A., Deyholos, M. K., Sanogo, Lehnhoff S. E. A., & Beck L. (2023). Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy, 13(6): 1521. https://doi.org/10.3390/agronomy13061521

Rillig, M. C., Ryo, M., Lehmann, A., Aguilar-Trigueros, C. A., Buchert, S., Wulf, A., Iwasaki, A., Roy, J., & Yang, G. (2019). The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366(6467), 886-890. https://doi.org/10.1126/science.aay2832

Sandalio, L. M., Dalurzo, H. C., Gomez, M., Romero-Puertas, M. C., & Del Rio, L. A. (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 522, 115-126. https://doi.org/10.1093/jexbot/52.364.2115

Shao, D. D., Wu, S. C., Liang, P., Kang, Y., Fu, W. J., Zhao, K. L., Cao, Z. H. & Wong, M. H. (2012). A human health risk assessment of mercury species in soil and food around compact fluorescent lamp factories in Zhejiang Province, PR China. Journal of Hazardous Materials, 221-222, 28-34. https://doi.org/10.1016/j.jhazmat.2012.03.061

Sharma, A., Sharma, A., & Arya, R. K. (2015). Removal of Mercury (II) from Aqueous Solution: A Review of Recent Work. Separation Science and Technology, 50, 1310-1320. https://doi.org/10.1080/01496395.2014.968261

Siddiqui, M. M., Abbasi, B. H., Ahmad, N., Ali, M., & Mahmood, T. (2012). Toxic effects of heavy metals (Cd, Cr and Pb) on seed germination and growth and DPPH-scavenging activity in Brassica rapa var. turnip. Toxicology and Industrial Health, 30(3), 238-249. https://doi.org/10.1177/0748233712452605

Singh, A., Khanna, K., Kour, J., Dhiman, S., Bhardwaj, T., Devi, K., Sharma, N., Kumar, P., Kapoor, N., & Sharma, P. (2023). Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere, 319, 137917. https://doi.org/10.1016/j.chemosphere.2023.137917

Soldo, D., & Behra, R. (2000). Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver. Aquatic Toxicology, 47, 181-189. https://doi.org/10.1016/S0166-445X(99)00020-X

Tachibana, Y., Kikuzaki, H., Lajis, N. H., & Nakatani, N. (2001). Anti Oxidative Activity of Carbazoles Form Murraya koenigii Leaves. Journal of Agricultural and Food Chemistry, 49, 5589-5594. https://doi.org/10.1021/jf010621r

Tamas, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T., & Christen, P. (2014). Heavy Metals and Metalloids as a Cause for Protein Misfolding and Aggregation. Biomolecules, 4(1), 252-267. https://doi.org/10.3390/biom4010252

Tembhurne, S. V., & Sakarkar, D. M. (2009). Hypoglycemic effects of fruit juice of Murraya koenigii (L) in alloxan induced diabetic mice. International Journal of Pharmtech Research, 1(4), 1589-1593.

Triantaphylides, C., & Havaux, M. (2009). Singlet oxygen in plants: production, detoxification and signaling. Trends in Plant Science, 14(4), 219-228. https://doi.org/10.1016/j.tplants.2009.01.008

Verma, S. (2018). Overview Study on Murraya Koenigii (Mitha Neem): Rutaceae. Journal of Drug Delivery and Therapeutics, 8(4), 90-92. https://doi.org/10.22270/jddt.v8i4.1795

Vijay, M., Arun Kumarasarangan, G., & Vimala, P. (2025). Tox.icological effects of Mercury in Radish (Raphanus Sativus) plants – Biochemical Analysis. Scholars Academic Journal of Pharmacy, 14(1), 1-8. https://doi.org/10.36347/sajp.2025.v14i01.001

Vijay, M., Partheepan, I, & Sangeetha, R. (2024). Effects of Ferrous Iron Toxicity on Growth, Biochemical Alterations and Enzymatic Antioxidant Status in Capsicum annuum L. Scholars Academic Journal of Biosciences, 12(11), 391-397. https://doi.org/10.36347/sajb.2024.v12i11.002

Wu X., Cobbina S. J., Mao G., Xu H., Zhang Z., & Yang L. (2016). A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research, 23, 8244-8259. https://doi.org/10.1007/s11356-016-6333-x

Zhang, C., Nie, S., Liang, J., Zeng, G., Wu, H., Hua, S., Liu, J., Yuan, Y., Xiao, H., & Deng, L., (2016). Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Science of the Total Environment. 557-558, 785-790.

Zhang, Q., Guo, W., Wang, B., Feng, Y., Han, L., Zhang, C., Xie, H., Liu, X., & Feng, Y. (2023). Influences of microplastics types and size on soil properties and cadmium adsorption in paddy soil after one rice season. Resources, Environment and Sustainability, 11, 100102. https://doi.org/10.1016/j.resenv.2022.100102

Downloads

Published

15-03-2025

How to Cite

Vijay, M., Vijayasanthi, G., & MohammedKhaleef, K. (2025). Toxicological Effects of Mercury-Induced Biochemical Alterations in Curry Leaves (Murraya koenigii) Plants. AgroEnvironmental Sustainability, 3(1), 10–21. https://doi.org/10.59983/s2025030102

Issue

Section

Research