Numerical Verification of Groundwater Suitability for Irrigation Around the Subsurface Dam Area of Miyako Island, Japan

Open Access
Download PDF
AgroEnvironmental Sustainability
A. K. M. Adham , Md. Touhidul Islam

Abstract

The sustainable management of water resources is essential for agricultural productivity, especially in areas with scarce water availability. This study focused on assessing groundwater quality for irrigation near the subsurface dam area of Miyako Island, Japan. Water samples from three observation points were tested for various parameters, including electrical conductivity (EC), sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium bicarbonate (RSBC), permeability index (PI), Kelley's ratio (KR), and magnesium adsorption ratio (MAR). EC values ranged from 270 to 800 µS/cm, suggesting water quality ranging from doubtful to good. SAR values between 0.23 and 1.49 suggested excellent quality. SSP ranged from 7.90% to 31.71%, mostly indicating good to excellent quality. RSBC values fluctuated between -1.57 to 1.45 epm, largely within safe limits. PI values varied from 40.34 to 75.83, indicating good permeability. Total hardness (TH) ranged from 105.50 to 326.45 ppm, classifying the water as hard to very hard. MAR values were below 50, suggesting potential soil issues. A numerical model confirmed observed Ca²⁺ concentrations, showing an increasing trend due to enhanced CO₂ emissions and lower pH. The data analysis revealed strong positive relationships between SSP and KR (r = 0.984), SAR and SSP (r = 0.951), and SAR and KR (r = 0.960). Despite generally acceptable values, continuous monitoring is recommended, especially for hardness, to ensure sustainable crop production. This study underscores the need for regular assessment and management of groundwater quality in subsurface dam areas to mitigate potential adverse effects on soil and agricultural productivity.

Keywords

groundwater quality irrigation suitability Miyako island numerical modeling subsurface dam

References

  1. Adham, A. K. M., & Kobayashi, A. (2010). Effect of global warming on the dissolution of limestone. Journal of Rainwater Catchment Systems, 15(2), 1-9. https://doi.org/10.7132/jrcsa.KJ00006069056 [Google Scholar]
  2. Adham, A. K. M., Kobayashi, A., & Murakami, A. (2011). Effect of climatic change on groundwater quality around the subsurface dam. GEOMATE Journal, 1(1), 25-31. [Google Scholar]
  3. Adham, A. K. M., Kobayashi, A., & Teranishi, S. (2010). Dissolution of limestone and sustainable groundwater development from underground dam area. Journal of Rainwater Catchment Systems, 16(1), 1-8. https://doi.org/10.7132/jrcsa.16_1_1 [Google Scholar]
  4. Ahamad, F., Sharma, A. K., & Tyagi, S. K. (2023). A Study on comparative assessment of water quality of Dal and Nigeen Lakes of Jammu and Kashmir, India. AgroEnvironmental Sustainability, 1(1), 48-56. https://doi.org/10.59983/s2023010107 [Google Scholar]
  5. Alrajhi, A., Beecham, S., Bolan, N. S., & Hassanli, A. (2015). Evaluation of soil chemical properties irrigated with recycled wastewater under partial root-zone drying irrigation for sustainable tomato production. Agricultural Water Management, 161, 127-135. https://doi.org/10.1016/j.agwat.2015.07.013 [Google Scholar]
  6. Ameta, S. K., Kamaal, M., & Ahamad, F. (2023). Impact of Domestic and Industrial Effluent Disposal on Physicochemical Characteristics of River Malin at Najibabad City, India. AgroEnvironmental Sustainability, 1(3), 246-256. https://doi.org/10.59983/s2023010306 [Google Scholar]
  7. Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (Vol. 29, p. 174). Rome: Food and agriculture organization of the United Nations, Rome, Italy. [Google Scholar]
  8. Dai, Z., Xu, L., Xiao, T., McPherson, B., Zhang, X., Zheng, L., & Viswanathan, H. (2020). Reactive chemical transport simulations of geologic carbon sequestration: Methods and applications. Earth-Science Reviews, 208, 103265. https://doi.org/10.1016/j.earscirev.2020.103265 [Google Scholar]
  9. Das, N., Rahman, M. M., Islam, M. T., & Adham, A. K. M. (2019). Assessing groundwater suitability for irrigation: A case study for Durgapur upazila of Bangladesh. Fundamental and Applied Agriculture, 4(3), 916-927. https://doi.org/10.5455/faa.45057 [Google Scholar]
  10. Das, N., Islam, M. T., Islam, M. S., & Adham A. K. M. (2018). Response of dairy farm’s wastewater irrigation and fertilizer interactions to soil health for maize cultivation in Bangladesh. Asian-Australasian Journal of Bioscience and Biotechnology, 3(1), 33-39. https://doi.org/10.3329/aajbb.v3i1.64749 [Google Scholar]
  11. Doneen, L. D. (1964). Notes on water quality in agriculture. Department of Water Science and Engineering, University of California, Davis. [Google Scholar]
  12. Gao, Y., Chen, J., Qian, H., Wang, H., Ren, W., & Qu, W. (2022). Hydrogeochemical characteristics and processes of groundwater in an over 2260 year irrigation district: A comparison between irrigated and nonirrigated areas. Journal of Hydrology, 606, 127437. https://doi.org/10.1016/j.jhydrol.2022.127437 [Google Scholar]
  13. Gupta, S. K., & Gupta, I. C. (1987). Management of saline soils and waters. Oxford and IBH Publishing Company, New Delhi, India. 210p. [Google Scholar]
  14. Guyo, R. H., Wang, K., Saito, M., Onodera, S. I., Shimizu, Y., & Moroizumi, T. (2024). Spatiotemporal shallow and deep groundwater dynamics in a forested mountain catchment with diverse slope gradients, western Japan. Groundwater for Sustainable Development, 25, 101150. https://doi.org/10.1016/j.gsd.2024.101150 [Google Scholar]
  15. Hasan, S., Adham, A. K. M., Islam, M. T., & Islam, D. (2016). Effect of climate change on groundwater quality for irrigation purpose in a limestone enriched area. International Review of Civil Engineering, 7(1), 5-12. https://doi.org/10.15866/irece.v7i1.8239 [Google Scholar]
  16. Ishida, S., Tsuchihara, T., Yoshimoto, S., & Imaizumi, M. (2011). Sustainable use of groundwater with underground dams. Japan Agricultural Research Quarterly, 45(1), 51-61. https://doi.org/10.6090/jarq.45.51 [Google Scholar]
  17. Islam, M. S., Islam, M. T., Hossain, S. A. A. M., Adham, A. K. M., & Islam, D. (2017). Impacts of dairy farm’s wastewater irrigation on growth and yield attributes of maize. Fundamental and Applied Agriculture, 2(2), 247-255. [Google Scholar]
  18. Islam, M. T., Adham, A. K. M., & Islam, D. (2015). Effects of dairy farm’s wastewater irrigation on wheat production and soil health. Journal of Environmental Science and Natural Resources, 8(2), 157-162. https://doi.org/10.3329/jesnr.v8i2.26884 [Google Scholar]
  19. Islam, M. T., Das, N., Jahan, N., Siddik, M. S., Mahmud, K., & Adham, A. K. M. (2023). Utilizing geographic information system and indexing to evaluate irrigation suitability of groundwater in Kalihati Upazila, Bangladesh. Archives of Agriculture and Environmental Science, 8(3), 385-396. https://doi.org/10.26832/24566632.2023.0803017 [Google Scholar]
  20. Jahan, N., Khan, M. B., Ali, M. A., Islam, M. T., & Siddik, M. S. (2020). Spatial appraisal of groundwater quality for drinking purposes: A case study of Kalihati Upazila, Bangladesh. Fundamental and Applied Agriculture, 5(4), 521-536. https://dx.doi.org/10.5455/faa.129984 [Google Scholar]
  21. Javed, T., Sarwar, T., Ullah, I., Ahmad, S., & Rashid, S. (2019). Evaluation of groundwater quality in district Karak Khyber Pakhtunkhwa, Pakistan. Water Science, 33(1), 1-9. https://doi.org/10.1080/11104929.2019.1626630 [Google Scholar]
  22. Kelley, W. P. (1963). Use of saline irrigation water. Soil science, 95(6), 385-391. [Google Scholar]
  23. Knapp, W. J., & Tipper, E. T. (2022). The efficacy of enhancing carbonate weathering for carbon dioxide sequestration. Frontiers in Climate, 4, 928215. https://doi.org/10.3389/fclim.2022.928215 [Google Scholar]
  24. Liu, J., Brunner, P., & Tokunaga, T. (2023). Impacts of Subsurface Dam Construction on Downstream Groundwater Levels and Salinity in Coastal Aquifers. Groundwater, 61(6), 865-878. https://doi.org/10.1111/gwat.13304 [Google Scholar]
  25. Mohanavelu, A., Naganna, S. R., & Al-Ansari, N. (2021). Irrigation induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts and mitigation strategies. Agriculture, 11(10), 983. https://doi.org/10.3390/agriculture11100983 [Google Scholar]
  26. Raghunath, H. M. (1987). Groundwater (2nd edition). Wiley Eastern Ltd., New Delhi, India, pp. 344–369. [Google Scholar]
  27. Rana, M. M., Islam, M. T., Datta, S., Rahman, M. M., & Adham, A. K. M. (2019). Suitability of powerplant disposed water for irrigation of Ashuganj agro-irrigation project in Bangladesh. Progressive Agriculture, 30(1), 113-124. https://doi.org/10.3329/pa.v30i1.42218 [Google Scholar]
  28. Richards, L. A. (1954). Diagnostic and improvement of saline and alkaline soils. United States Department of Agriculture (USDA), Handbook 60, Washington DC, pp. 160. [Google Scholar]
  29. Sawyer, C. N. (1967). Chemistry for sanitary engineers. McGraw Hill, New York, pp. 518. [Google Scholar]
  30. Sun, Y., Xu, S. G., Kang, P. P., Fu, Y. Z., & Wang, T. X. (2019). Impacts of artificial underground reservoir on groundwater environment in the reservoir and downstream area. International Journal of Environmental Research and Public Health, 16(11), 1921. https://doi.org/10.3390/ijerph16111921 [Google Scholar]
  31. Todd, D. K. (1980). Groundwater Hydrology. Wiley International Edition, John Wiley and Sons. Inc., New York, pp. 31-315. [Google Scholar]
  32. Tsujino, M., Hirabayashi, S., Miyairi, Y., Ijichi, T., Miyajima, T., & Yokoyama, Y. (2024). Groundwater dynamics on small carbonate islands: Insights from radiocarbon and stable isotopes in Kikai Island, Southwest Japan. Science of The Total Environment, 171049. https://doi.org/10.1016/j.scitotenv.2024.171049 [Google Scholar]
  33. WHO. (1989). Health guidelines for the use of wastewater in agriculture and aquaculture: report of a WHO scientific group [meeting held in Geneva from 18 to 23 November 1987]. World Health Organization, Geneva, Switzerland. [Google Scholar]
  34. Wilcox, L. (1955). Classification and use of irrigation waters. United States Department of Agriculture (USDA), Circular No. 969, Washington DC, pp. 19. [Google Scholar]
  35. Yadav, S. K., & Chakrapani, G. J. (2006). Dissolution kinetics of rock–water interactions and its implications. Current Science, 932-937. [Google Scholar]
  36. Yang, Z., Tang, C., Bagan, H., Satake, S., Orimo, M., Fukumoto, K., & Wang, G. (2022). Groundwater Management in an Uncommon and Artificial Aquifer Based on Kc Approach and MODIS ET Products for Irrigation Assessment in a Subtropical Island. Remote Sensing, 14(24), 6304. https://doi.org/10.3390/rs14246304 [Google Scholar]
  37. Yang, Z., Tang, C., Satake, S., Orimo, M., Fukumoto, K., & Cao, Y. (2023). Heterogeneity of hydrological connectivity in coral limestone groundwater pool from vertical, spatial and temporal tracing of groundwater chemicals and isotopes. Journal of Hydrology, 623, 129636. https://doi.org/10.1016/j.jhydrol.2023.129636 [Google Scholar]
  38. Yasmin, G., Islam, D., Islam, M. T., & Adham, A. K. M. (2019). Evaluation of groundwater quality for irrigation and drinking purposes in Barishal district of Bangladesh. Fundamental and Applied Agriculture, 4(1), 632-641. https://doi.org/10.5455/faa.301258 [Google Scholar]
  39. Zhou, Y., Li, P., Xue, L., Dong, Z., & Li, D. (2020). Solute geochemistry and groundwater quality for drinking and irrigation purposes: A case study in Xinle City, North China. Geochemistry, 80(4), 125609. https://doi.org/10.1016/j.chemer.2020.125609 [Google Scholar]

Similar Articles

1-10 of 26

You may also start an advanced similarity search for this article.