A Study on Comparative Assessment of Water Quality of Dal and Nigeen Lakes of Jammu and Kashmir, India

Open Access
Download PDF
AgroEnvironmental Sustainability
Faheem Ahamad , Arun Kumar Sharma , Sandeep Kumar Tyagi

Abstract

The lakes of the Kashmir valley, India are under continuous pressure due to increasing anthropogenic activities. In the present study, an attempt has been made to monitor the quality of two important lakes (Dal and Nigeen) of Jammu and Kashmir (J&K), India. These lakes hold significant ecological, cultural, and economic value, attracting many tourists and serving as vital sources of fresh water for local communities. Five sampling sites were selected in the study area, out of which three are in Dal Lake and two in Nigeen Lake. A comparison of the water quality of both lakes was made in the present investigation based on selected physicochemical parameters like water pH, conductivity (EC), dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), chloride (Cl-), sulfate (SO42-), nitrate (NO3-) and phosphate (PO43-). The results revealed that the value of most of the parameters was higher in Dal Lake (BOD, EC, COD, and PO43-) while some parameters were found higher in Nigeen Lake (NO3-, DO, Cl- and SO42-). The student t-test showed significant differences (p < 0.05) between the means of most of the studied parameters of both the lake except EC and NO3-. Although all the parameters were within the limits if the trend of pollution continues, then the water quality of both lakes will become unfit for aquatic plants, animals, and tourist activities also. This study highlights the urgent need for effective water management strategies and conservation efforts to preserve the water quality of Dal and Nigeen Lakes.

Keywords

anthropogenic sources Dal Lake Nigeen Lake pollution

References

  1. Abdelrazek, S. (2019). Monitoring irrigation water pollution of Nile Delta of Egypt with heavy metals. Alexandria Science Exchange Journal, 40, 441-450. https://doi.org/10.21608/asejaiqjsae.2019.50350 [Google Scholar]
  2. Abubakr, A., Balkhi, M. H., & Kumar, A. (2018). The Hydrochemistry of a Himalayan Lake Nigeen. Nature Environment and Pollution Technology, 17(2), 625-629. [Google Scholar]
  3. Adimalla, N., & Taloor, A. K. (2020). Hydrogeochemical investigation of groundwater quality in the hard rock terrain of South India using Geographic Information System (GIS) and groundwater quality index (GWQI) techniques. Groundwater for Sustainable Development, 10, 100288. https://doi.org/10.1016/j.gsd.2019.100288 [Google Scholar]
  4. Amin, A., Fazal, S., Mujtaba, A., & Singh, S. K. (2014). Effects of land transformation on water quality of Dal Lake, Srinagar, India. Journal of the Indian Society of Remote Sensing, 42, 119-128. https://doi.org/10.1007/s12524-013-0297-9 [Google Scholar]
  5. APHA, AWWA, & WPCF (2012). Standard Methods for the Examination of Water and Wastewater, 22nd edn. Water Environment Federation Washington, DC, USA. [Google Scholar]
  6. Ashraf, S., Kaur, S., & Singla, S. (2022). Water Quality Assessment of Anchar Lake, Srinagar, India. Civil and Environmental Engineering Reports, 32(1), 88-115. https://doi.org/10.2478/ceer-2022-0006 [Google Scholar]
  7. Badar, B., Romshoo, S. A., & Khan, M. A. (2013). Modelling catchment hydrological responses in a Himalayan Lake as a function of changing land use and land cover. Journal of Earth System Science, 122, 433-449. https://doi.org/10.1007/s12040-013-0285-z [Google Scholar]
  8. Bhat, S. A., & Pandit, A. K. (2014). Surface water quality assessment of Wular Lake, a Ramsar site in Kashmir Himalaya, using discriminant analysis and WQI. Journal of Ecosystems, 2014, 724728. https://doi.org/10.1155/2014/724728 [Google Scholar]
  9. Bhat, S. U., Dar, G., Sofi, A. H., Dar, N. A., & Pandit, A. K. (2012). Macroinvertebrate community assossiciations on three different macrophytic species in Manasbal Lake. Research Journal of Environmental Sciences, 6(2), 62-76. https://doi.org/10.3923/rjes.2012.62.76 [Google Scholar]
  10. Bhutiani, R., & Ahamad, F. (2018). Efficiency assessment of Sand Intermittent Filtration Technology for wastewater Treatment. International Journal of Advance Research in Science and Engineering, 7(3), 412-421. [Google Scholar]
  11. Bhutiani, R., Ahamad, F., & Ruhela, M. (2021). Effect of composition and depth of filter-bed on the efficiency of Sand-intermittent-filter treating the Industrial wastewater at Haridwar, India. Journal of Applied and Natural Science, 13(1), 88-94. https://doi.org/10.31018/jans.v13i1.2421 [Google Scholar]
  12. Bhutiani, R., Khanna, D. R., Kumar, R., Ram, K., & Ahamad, F. (2019). Impact assessment of sewage treatment plants’ effluent discharge on the quality of Ganga river at Haridwar, Uttarakhand. Journal of Mountain Research, 14(2), 77-83. https://doi.org/10.51220/jmr.v14i2.10 [Google Scholar]
  13. Dar, S. A., Bhat, S. U., Aneaus, S., & Rashid, I. (2020). A geospatial approach for limnological characterization of Nigeen Lake, Kashmir Himalaya. Environmental Monitoring and Assessment, 192, 1-18. https://doi.org/10.1007/s10661-020-8091-y [Google Scholar]
  14. Das Kangabam, R., Bhoominathan, S. D., Kanagaraj, S., & Govindaraju, M. (2017). Development of a water quality index (WQI) for the Loktak Lake in India. Applied Water Science, 7, 2907-2918. https://doi.org/10.1007/s13201-017-0579-4 [Google Scholar]
  15. Deep, A., Gupta, V., Bisht, L., & Kumar, R. (2020). Application of WQI for water quality assessment of high-altitude snow-fed sacred Lake Hemkund, Garhwal Himalaya. Sustainable Water Resources Management, 6, 1-8. https://doi.org/10.1007/s40899-020-00449-w [Google Scholar]
  16. Dhinamala, K., Pushpalatha, M., Samuel, T., & Raveen, R. (2015). Spatial and temporal variations in the water quality parameters of Pulicat Lake, Tamil Nadu, India. International Journal of Fisheries and Aquatic Studies, 3(2), 255-259. [Google Scholar]
  17. Ducey, M. J., Johnson, K. M., Belair, E. P., & Cook, B. D. (2018). The influence of human demography on land cover change in the Great Lakes States, USA. Environmental Management, 62, 1089-1107. https://doi.org/10.1007/s00267-018-1102-x [Google Scholar]
  18. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z., Knowler, D. J., Leveque, C., Naiman, R. J., Prieur-Richard, A., Soto, D., Stiassny, M. L. J., & Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163–182. https://doi.org/10.1017/S1464793105006950 [Google Scholar]
  19. Dumont, H. J. (2009). The Nile: Origin, Environments, Limnology and Human Use: 89 (Monographiae Biologicae). Springer; 1st ed. pp. 819. [Google Scholar]
  20. Gopalkrushna, H. M. (2011). Determination of physico-chemical parameters of surface water samples in and around Akot city. International Journal of Research in Chemistry and Environment, 1(2), 183-187. [Google Scholar]
  21. Habib, R. Z., Thiemann, T., & Al Kendi, R. (2020). Microplastics and Wastewater Treatment Plants-A Review. Journal of Water Resource and Protection, 12, 1-35. https://doi.org/10.4236/jwarp.2020.121001 [Google Scholar]
  22. Havens, K. E., Ji, G., Beaver, J. R., Fulton, R. S., & Teacher, C. E. (2019). Dynamics of cyanobacteria blooms are linked to the hydrology of shallow Florida lakes and provide insight into possible impacts of climate change. Hydrobiologia, 829(1), 43–59. https://doi.org/10.1007/s10750-017-3425-7 [Google Scholar]
  23. Hutchinson, G. E. (1957). A treatise on limnology. Geography, Physics and Chemistry, Wiley, pp. 1015. [Google Scholar]
  24. Hutchinson, G. E. (1973). Eutrophication. The scientific background of a contemporary practical problem. American Scientist, 61, 269–279. [Google Scholar]
  25. Khan, A. A., Gaur, R. Z., Mehrotra, I., Diamantis, V., Lew, B., & Kazmi, A. A. (2014). Performance assessment of different STPs based on UASB followed by aerobic post treatment systems. Journal of Environmental Health Science and Engineering, 12, 1-13. https://doi.org/10.1186/2052-336x-12-43 [Google Scholar]
  26. Khan, M. A., Shah, M. A., Mir, S. S., & Bashir, S. (2004). The environmental status of a Kashmir Himalayan wetland game reserve: aquatic plant communities and eco-restoration measures. Lakes & Reservoirs: Research & Management, 9(2), 125–132. https://doi.org/10.1111/j.1440-1770.2004.00242.x [Google Scholar]
  27. Khanna, D. R., & Bhutiani, R. (2008). Laboratory manual of water and Waste water Analysis. Daya Publishing House New Delhi, India. [Google Scholar]
  28. Kumar, R., Parvaze, S., Huda, M. B., & Allaie, S. P. (2022). The changing water quality of lakes—a case study of Dal Lake, Kashmir Valley. Environmental Monitoring and Assessment, 194(3), 228. https://doi.org/10.1007/s10661-022-09869-x [Google Scholar]
  29. Kumar, R., Singh, S., & Sharma, R. C. (2019). Application of WQI for assessment of water quality of high altitude lake Dodi Tal, Garhwal Himalaya, India. Sustainable Water Resources Management, 5, 1033-1042. https://doi.org/10.1007/s40899-018-0281-1 [Google Scholar]
  30. Leach, T. H., Winslow, L. A., Hayes, N. M., & Rose, K. C. (2019). Decoupled trophic responses to long-term recovery from acidification and associated browning in lakes. Global Change Biology, 25(5), 1779-1792. https://doi.org/10.1111/gcb.14580 [Google Scholar]
  31. Li, Y. L., Tao, H., Yao, J., & Zhang, Q. (2016). Application of a distributed catchment model to investigate hydrological impacts of climate change within Poyang Lake catchment (China). Hydrology Research, 47, 120–135. https://doi.org/10.2166/nh.2016.234 [Google Scholar]
  32. Maansi, Jindal, R., & Wats, M. (2022). Evaluation of surface water quality using water quality indices (WQIs) in Lake Sukhna, Chandigarh, India. Applied Water Science, 12, 1-14. https://doi.org/10.1007/s13201-021-01534-x [Google Scholar]
  33. Markovic, D., Carrizo, S. F., Kärcher, O., Walz, A., & David, J. N. (2017). Vulnerability of European freshwater catchments to climate change. Global Change Biology, 23(9), 3567–3580. https://doi.org/10.1111/gcb.13657 [Google Scholar]
  34. Meenakshipruya, M., Saranvanan, K., Shanmugam, R., & Sathiyavathi, S. (2008). Study of pH system in common effluent treatment plant. Modern Applied Science, 2(4): 113-121. https://doi.org/10.5539/mas.v2n4p113 [Google Scholar]
  35. Menberu, Z., Mogesse, B., & Reddythota, D. (2021). Evaluation of water quality and eutrophication status of Hawassa Lake based on different water quality indices. Applied Water Science, 11, 1-10. https://doi.org/10.1007/s13201-021-01385-6 [Google Scholar]
  36. Millier, H. K., Hooda, P. S., & Downward, S. R. (2010). The impact of treated sewage wastewater discharges on the phosphorus levels and hydrology of two second order rivers flowing into the Thames. Journal of Environmental Monitoring, 12(6), 1307-1314. https://doi.org/10.1039/B923263J [Google Scholar]
  37. Moldan, F., Cosby, B. J., & Wright, R. F. (2013). Modeling past and future acidification of Swedish lakes. Ambio, 42(5), 577–586. https://doi.org/10.1007/s13280-012-0360-8 [Google Scholar]
  38. Najar, I. A., & Khan, B. (2012). Assessment of water quality and identification of pollution sources of three lakes in Kashmir, India, using multivariate analysis. Environmental Earth Sciences, 66(8), 2367–2378. https://doi.org/10.1007/s12665-011-1458-1 [Google Scholar]
  39. Nelson, N. M., Loomis, J. B., Paul, M., Jakus, P. M., Kealy, M. J., Stackelburg, N., & Ostermiller, J. (2015). Linking ecological data and economics to estimate the total economic value of improving water quality by reducing nutrients. Ecological Economics, 118, 1–9. https://doi.org/10.1016/j. ecolecon.2015.06.013 [Google Scholar]
  40. Nissa, M. & Bhat, S. U. (2016). An assessment of phytoplankton in Nigeen Lake of Kashmir Himalaya. Asian Journal of Biological Sciences, 9, 27–40. https://doi.org/10.3923/ajbs.2016.27.40 [Google Scholar]
  41. Odada, E. O., Olago, D. O., Kulindwa, K., Ntiba, M., & Wandiga, S. (2004). Mitigation of environmental problems in Lake Victoria, East Africa: causal chain and policy options analyses. Ambio, 33, 13–23. https://doi.org/10.1579/0044-7447- 33.1.13 [Google Scholar]
  42. Pandey, A. C., & Kumar, A. (2015). Spatio-temporal variability of surface water quality of fresh water resources in Ranchi urban agglomeration, India using geospatial techniques. Applied Water Science, 5(1), 13-26. https://doi.org/10.1007/s13201-014-0165-y [Google Scholar]
  43. Parvez, S., & Bhat, S. U. (2014). Searching for water quality improvement in Dal lake, Srinagar, Kashmir. Journal of Himalayan Ecology and Sustainable Development, 9, 51– 64. [Google Scholar]
  44. Purandara, B. K., Varadarajan, N., & Jayashree, K. (2003). Impact of sewage on ground water quality-A case study. Pollution Research, 22(2), 189-197. [Google Scholar]
  45. Rashid, I., & Aneaus, S. (2019). High resolution earth observation data for assessing the impact of land system changes on wetland health in Kashmir Himalaya, India. Arabian Journal of Geosciences, 12, 453. https://doi.org/10.1007/s12517-019-4649-9 [Google Scholar]
  46. Rashid, I., Romshoo, S. A., Amin, M., Khanday, S. A., & Chauhan, P. (2017). Linking human-biophysical interactions with the trophic status of Dal lake. Limnologica-Ecology and Management of Inland Waters, 62, 84–96. https://doi.org/10.1016/j.limno.2016.11.008 [Google Scholar]
  47. Rather, I. A., & Dar, A. Q. (2020). Assessing the impact of land use and land cover dynamics on water quality of Dal Lake, NW Himalaya, India. Applied Water Science, 10(10), 1-18. https://doi.org/10.1007/s13201-020-01300-5 [Google Scholar]
  48. Rather, M. I., Rashid, I., Shahi, N., Murtaza, K. O., Hassan, K., Yousuf, A. R., Romshoo, S. A., & Shah, I. Y. (2016). Massive land system changes impact water quality of the Jhelum River in Kashmir Himalaya. Environmental Monitoring and Assessment, 188(3), 185. https://doi.org/10.1007/s10661-016-5190-x [Google Scholar]
  49. Rizk, R., Juzsakova, T., Cretescu, I., Rawash, M., Sebestyén, V., Le Phuoc, C., & Shafik, H. (2020). Environmental assessment of physical-chemical features of Lake Nasser, Egypt. Environmental Science and Pollution Research, 27, 20136-20148. https://doi.org/10.1007/s11356-020-08366-3 [Google Scholar]
  50. Romshoo, S. A., & Muslim, M. (2011). Geospatial modeling for assessing the nutrient load of a Himalayan lake. Environmental Earth Sciences, 64(5), 1269–1282. https://doi.org/10.1007/s12665-011-0944-9 [Google Scholar]
  51. Roy, R., & Majumder, M. (2019). Assessment of water quality trends in Loktak Lake, Manipur, India. Environmental earth sciences, 78, 1-12. https://doi.org/10.1007/s12665-019-8383-0 [Google Scholar]
  52. Ruhela, M., Wani, A. A., & Ahamad, F. (2020). Efficiency of Sequential Batch Reactor (SBR) based sewage treatment plant and its discharge impact on Dal Lake, Jammu & Kashmir, India. Archives of Agriculture and Environmental Science, 5(4), 517-524. https://doi.org/10.26832/24566632.2020.0504013 [Google Scholar]
  53. Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10(2), 126–139. https://doi.org/10.1065/espr2002.12.142 [Google Scholar]
  54. Smol, J. P.,Wolfe, A. P., Birks, H. J. B., Douglas, M. S., Jones, V. J., Korhola, A., Pienitz, R., Rühland, K., Sorvari, S., Antoniades, D., Brooks, S. J., Marie-Andrée, F., Hughes, M., Keatley, B. E., Laing, T. E., Michelutti, N., Nazarova, L., Nyman, M., Paterson, A. M., Perren, B., Quinlan, R., Rautio, M., Saulnier-Talbot, E., Siitonen, S., Solovieva, N., & Weckström, J. (2005). Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences, 102(12), 4397–4402. https://doi.org/10.1073/pnas.0500245102 [Google Scholar]
  55. Sudarshan, P., Mahesh, M. K., & Ramachandra, T. V. (2019). Assessment of seasonal variation in water quality and water quality index (WQI) of Hebbal Lake, Bangalore, India. Environment and ecology, 37(1B), 309-317. [Google Scholar]
  56. Suplee, M. W., Sada, R., & Feldman, D. L. (2019). Aquatic plant and dissolved oxygen changes in a reference‐condition prairie stream subjected to experimental nutrient enrichments. JAWRA Journal of the American Water Resources Association, 55(3), 700-719. https://doi.org/10.1111/1752-1688.12736 [Google Scholar]
  57. Walsh, P. J., & Milon, J. W. (2016). Nutrient standards, water quality indicators, and economic benefits from water quality regulations. Environmental and Resource Economics, 64, 643–661. https://doi.org/10.1007/s10640-015-9892-2 [Google Scholar]
  58. Wang, H., Mao, L., Lu, S., Ying, J., Jiang, Q., Yuan, R., Liu, X., Wang, M., & Zhao, D. (2019). What determines the change of lakes in large cities under climate change and anthropogenic activities? Evidence from Eastern China. Polish Journal of Environmental Studies, 28(3), 1949–1956. https://doi.org/10.15244/pjoes/90481 [Google Scholar]
  59. Wani, Y. H., Jatayan, M., Kumar, S., & Ahmad, S. (2016). Assessment of Water Quality of Dal Lake, Srinagar by Using Water Quality Indices. Journal of Environmental Science, Toxicology and Food Technology, 10(7): 95-101. [Google Scholar]
  60. WHO (1996). Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring. (World Health Organization) Edited by: Deborah Chapman. Second Edition - pp. 651. Available at: https://www.who.int/water_sanitation_ health/resources quality/watqualassess.pdf (accessed on 10 May 2023). [Google Scholar]
  61. Xu, J., Ho, A. Y. T., Yin, K., Yuan, X., Anderson, D. M., Lee, J. H.W., & Harrison, P. J. (2008). Temporal and spatial variations in nutrient stoichiometry and regulation of phytoplankton biomass in Hong Kong waters: Influence of the Pearl River outflow and sewage inputs. Marine Pollution Bulletin, 57, 335–348. https://doi.org/10.1016/j.marpolbul.2008.01.020 [Google Scholar]

Similar Articles

1-10 of 16

You may also start an advanced similarity search for this article.