Effects of Postharvest Chemical Preservatives on Shelf Life of Tomato (Lycopersicon esculentum cv. Srijana)

Open Access
Download PDF
AgroEnvironmental Sustainability
Mahesh K. C. , Bronika Thapa , Archana Bhatt , Sabina Aryal , Biraj Poudel

Abstract

In recent years, the practice of increasing the shelf life of post-harvest crops is gaining attention worldwide due to the failure of proper techniques to increase post-harvest shelf life. Tomatoes are fragile and have a low shelf life. It fetches low market prices during on-season production and fetches high market prices during off-season production. To address this scenario, research was conducted to study the effect of different preservatives on various physiochemical attributes of tomato (Lycopersicum esculentum). The effects of preservatives were studied on shelf life, disease infestation days, total soluble solids (TSS), titratable acidity (TA), pH, and weight loss percentage (WLP) at 2-day intervals during the storage period. The 7 treatments used were 2% CaCl2, 4%, CaCl2, 1% GA3, 3% GA3, 1000 ppm sodium benzoate, 2000 ppm sodium benzoate, and control in distilled water with 3 replications each. Each replication was immersed in a chemical preservative for 20 minutes and kept in a polyethylene bag. Among the treatments, fruits treated with 3% GA3 recorded the longest shelf life of 31.33 days, followed by 1% GA3 (27 days) and 4% CaCl2 (22 days) over the control (15.667 days). Disease incidence days were highest for 3% GA3 (32.33 days) followed by 1% GA3 (28.33 days) and 4% CaCl2 (23 days) over control (16.667 days). The percentage of physical weight loss on the day of data recording was minimum for 3% GA3 treated fruits and maximum for control. Similarly, TA, TSS, and pH of treated fruits show significant results over control.

Keywords

chemical preservatives infestation postharvest shelf life tomato

References

  1. AOAC (2005). Official methods of analysis of the Association of Analytical Chemists International. Official Methods: Volume 1, 15th Edition, Gaithersburg, MD, USA. Available online: https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf (accessed on 20 June 2023). [Google Scholar]
  2. Arah, I. K., Ahorbo, G. K., Anku, E. K., Kumah, E. K., & Amaglo, H. (2016). Postharvest handling practices and treatment methods for tomato handlers in developing countries: a mini review. Advances in Agriculture, 2016, 1–8. https://doi.org/10.1155/2016/6436945 [Google Scholar]
  3. Arthur, E., Oduro, I., & Kumah, P. (2015a). Postharvest quality response of tomato (Lycopersicon esculentum, Mill) fruits to different concentrations of calcium chloride at different dip-times. American Journal of Food and Nutrition, 5(1), 1–8. https://doi.org/10.5251/ajfn.2015.5.1.1.8 [Google Scholar]
  4. Bhattarai, D. R., & Gautam, D. M. (2006). Effect of harvesting method and calcium on post harvest physiology of tomato. Nepal Agriculture Research Journal, 7, 37–41. [Google Scholar]
  5. Chaplin, G. R., & Scott, K. J. (1980). Association of calcium in chilling injury susceptibility of stored avocados. HortScience, 15(4), 514-515. https://doi.org/10.21273/HORTSCI.15.4.514 [Google Scholar]
  6. Cheour, F., Willemot, C., Arul, J., Makhlouf, J., & Desjardins, Y. (1991). Postharvest response of two strawberry cultivars to foliar application of CaCl2. HortScience, 26(9), 1186-1188. http://doi.org/10.21273/HORTSCI.26.9.1186 [Google Scholar]
  7. Chilson, D., Delgado, A., & do Nascimento Nunes, M. C. (2011). Shelf Life of cluster tomatoes (Lycopersicum esculentum) stored at a non-chilling temperature and different relative humidity levels. In Proceedings of the Florida State Horticultural Society, Volume 124, pp. 246-255. [Google Scholar]
  8. Choudhary, P., & Dhruve, J. (2014). Influence of post-harvest treatments of gibberellic acid, potassium nitrate, and silicic acid in tomato (Lycopersicon esculentum Mill.). Green Farming, 5(5), 844–846. [Google Scholar]
  9. Demes, R., Satheesh, N., & Fanta, S. W. (2021). Effect of different concentrations of the gibberellic acid and calcium chloride dipping on quality and shelf-life of ko choro variety tomato. Philippine Journal of Science, 150(1), 335–349. https://doi.org/10.56899/150.01.30 [Google Scholar]
  10. Devkota, P., Devkota, P., Khadka, R., Gaire, K. R., & Dhital, P. R. (2019). Effects of chemical additives on shelf life of tomato (solanum lycopersicum) during storage. Journal of Agriculture and Forestry University, 3, 69–76. [Google Scholar]
  11. Kaur, A., Gill, P. P. S., & Jawandha, S. K. (2019). Effect of sodium benzoate application on quality and enzymatic changes of pear fruits during low temperature. Journal of Food Science and Technology, 56(7), 3391–3398. https://doi.org/10.1007/s13197-019-03823-5 [Google Scholar]
  12. Khader, S. E. S. A., Singh, B. P., & Khan, S. A. (1988). Effect of GA3 as a post-harvest treatment of mango fruit on ripening, amylase, and peroxidase activity and quality during storage. Scientia Horticulturae, 36(3–4), 261–266. https://doi.org/10.1016/0304-4238(88)90060-X [Google Scholar]
  13. Kumar, N., Tokas, J., Kumar, P., Singal, H. R., & Jayanti Tokas, C. (2018). Effect of salicylic acid on post-harvest quality of tomato (Solanum lycopersicum L.) fruit. International Journal of Chemical Studies, 6(1), 1744-1747. [Google Scholar]
  14. Le, T. T., Vo, T. K., Nguyen, T. M. L., Trieu, P. L., Ngo, V. T., & Nguyen, H. H. (2018). Efficacy of CaCl2 against some important postharvest fungi on orange, chili, and Cavendish banana fruits. Journal of Vietnamese Environment, 10(2), 120–128. https://doi.org/10.13141/jve.vol10.no2.pp120-128 [Google Scholar]
  15. Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207–220. https://doi.org/10.1016/S0925-5214(00)00133-2 [Google Scholar]
  16. Lester, G. E., & Grusak, M. A. (1999). Postharvest application of calcium and magnesium to honeydew and netted muskmelons: Effects on tissue ion concentrations, quality, and senescence. Journal of the American Society for Horticultural Science, 124(5), 545–552. https://doi.org/10.21273/jashs.124.5.545 [Google Scholar]
  17. Mansourbahmani, S., Ghareyazie, B., Kalatejari, S., Mohammadi, R. S., & Zarinnia, V. (2017). Effect of post-harvest UV-C irradiation and calcium chloride on enzymatic activity and decay of tomato (Lycopersicon esculentum L.) fruit during storage. Journal of Integrative Agriculture, 16(9), 2093–2100. https://doi.org/10.1016/S2095- 3119(16)61569-1 [Google Scholar]
  18. Martínez-Romero, D., Guillén, F., Castillo, S., Zapata, P. J., Serrano, M., & Valero, D. (2009). Development of a carbon-heat hybrid ethylene scrubber for fresh horticultural produce storage purposes. Postharvest Biology and Technology, 51(2), 200–205. https://doi.org/10.1016/j.postharvbio.2008.07.013 [Google Scholar]
  19. Mazumder, M. N. N., Misran, A., Ding, P., Wahab, P. E. M., & Mohamad, A. (2021). Effect of harvesting stages and calcium chloride application on postharvest quality of tomato fruits. Coatings, 11(12), 1445. https://doi.org/10.3390/coatings11121445 [Google Scholar]
  20. MoALD (2018). Statistical Information on Nepalese Agriculture 2074/75(2018). Singhadurbar, Kathmandu: Agri-Business Promotion and Statistics Division. Agri Statistics Section, Government of Nepal. [Google Scholar]
  21. MoALD (2020). Krishi Diary. Agriculture Information and Training Centre. Singha durbar, Kathmandu: Agri-Business Promotion and Statistics Division, Agri Statics Section, Government of Nepal. [Google Scholar]
  22. Molnár, B., Szabó, S., Veres, Á., & Holb, I. J. (2020). Effect of postharvest sodium benzoate treatment on some fruit parameters of two organic apple cultivars. International Journal of Horticultural Science, 26, 35–37. https://doi.org/10.31421/ijhs/26/2020/8004 [Google Scholar]
  23. Nasrin, T. A. A., Molla, M. M., Hossaen, A. (2008). Effect of postharvest treatments on shelf life and quality of tomato. Bangladesh Journal of Agricultural Research, 33, 579–585. [Google Scholar]
  24. Paul, V., & Pandey, R. (2013). Delaying tomato fruit ripening by using 1- Methylcyclopropene (1-MCP) for better postharvest management: Current status and prospects in India. Indian Journal of Plant Physiology, 18(3), 195–207. https://doi.org/10.1007/s40502-013-0039-6 [Google Scholar]
  25. Pila, N., Gol, N. B., & Rao, T. V. R. (2010). Effect of post-harvest treatments on physicochemical characteristics and shelf life of tomato (Lycopersicon esculentum Mill.) fruits during storage. Journal of Agriculture and Environmental Sciences, 9(5), 470–479. [Google Scholar]
  26. Rao, D. V. R., & Chundawat, B. S. (1988). Ripening changes in Sapota cv. Kalipati at ambient temperature. Indian Journal of Plant Physiology, 31, 205-208. [Google Scholar]
  27. Rawal, R., Gautam, D. M., Gautam, I. P., Khadka, R. B., Tripathi, K. M., Hanson, P., Acedo, A. L., Easdown, W., Hughes, J. A., & Keatinge, J. D. H. (2017). Evaluation of AVRDC advanced lines of long-shelf-life tomatoes in the Terai region of Nepal. Acta Horticulturae, 1179, 317–322. https://doi.org/10.17660/ActaHortic.2017.1179.49 [Google Scholar]
  28. Sammi, S., & Masud, T. (2009). Effect of different packaging systems on the quality of tomato (Lycopersicon esculentum var. Rio Grande) fruits during storage. International Journal of Food Science & Technology, 44(5), 918-926. [Google Scholar]
  29. Singh, S., Singh, A. K., & Joshi, H. K. (2005). Prolonging storability of Indian gooseberry (Embtica officinalis) under semi-arid ecosystem of Glajarat. Indian Journal of Agricultural Science, 75(10), 647-650. [Google Scholar]
  30. Singh, T. A., & Patel, A. D. (2014). Regulation of fruit ripening through post-harvest treatments of gibberellic acid (GA) and other chemicals on quality and shelf-life of tomato. Research Journal of Agricultural Sciences, 5(5), 845-851. [Google Scholar]
  31. Sinha, S. R., Singha, A., Faruquee, M., Jiku, M. A. S., Rahaman, M. A., Alam, M. A., & Kader, M. A. (2019). Post-harvest assessment of fruit quality and shelf life of two elite tomato varieties cultivated in Bangladesh. Bulletin of the National Research Centre, 43(1). https://doi.org/10.1186/s42269-019-0232-5 [Google Scholar]
  32. Srividya, S., Ramanjaneya Reddy, A., & Sudhavani, V. (2014). Effect of post-harvest chemicals on fruit physiology and shelf life of tomato under ambient conditions. International Journal of Agriculture and Food Science Technology, 5(2), 99–104. [Google Scholar]
  33. Sudha, R., Amutha, R., Muthulaksmi, S., Baby Rani, W., Indira, K., & Mareeswari, P. (2007). Influence of pre- and post-harvest chemical treatments on physical characteristics of Sapota (Achras sapota L.) var. PKM 1. Research Journal of Agriculture and Biological Sciences, 3(5),450–452. [Google Scholar]
  34. Tiwari, I., Shah, K. K., Tripathi, S., Modi, B., Shrestha, J., Pandey, H. P., Bhattarai, B. P., & Rajbhandari, B. P. (2020). Post-harvest practices and loss assessment in tomato (Solanum lycopersicum L.) in Kathmandu, Nepal. Journal of Agriculture and Natural Resources, 3(2), 335–352. https://doi.org/10.3126/janr.v3i2.32545 [Google Scholar]
  35. Tsomu, T., Patel, H. C., Thakkar, R. M., Ajang, M., & Vasara, R. P. (2015). Response of post-harvest treatments of chemical and plant growth regulators on biochemical characteristics of sapota fruit cv. Kalipatti. The Bioscan, 10(1), 33-36. [Google Scholar]
  36. Venkatram, A., Bhagwan, A., Thirupathi, J., & Kumar, S. (2015). Effect of antioxidants and modified atmospheric packaging on physic-chemical characteristics of Balanagar custard apple (Annona squamosa L.) fruits. Environmental & Ecology, 33(4), 1513-1518. [Google Scholar]
  37. Wills, R. B. H., & Warton, M. A. (2000). A new rating scale for ethylene action on postharvest fruit and vegetables. In: Improving Postharvest Technologies of Fruits, Vegetables and Ornamentals. Institute International of Refrigeration, Murcia, Spain, pp. 43-47. [Google Scholar]
  38. Youssef, K., Ligorio, A., Sanzani, S. M., Nigro, F., & Ippolito, A. (2012). Control of storage diseases of citrus by pre-and postharvest application of salts. Postharvest Biology and Technology, 72, 57-63. https://doi.org/10.1016/J.POSTHARVBIO.2012.05.004 [Google Scholar]
  39. Zewdie, T. M. (2017). Tomato quality is influenced by different packaging materials and practices. Journal of Scientific Agriculture, 1, 91. https://doi.org/10.25081/jsa 2017.v1i0.33 [Google Scholar]

Similar Articles

1-10 of 27

You may also start an advanced similarity search for this article.