Current Status and Future Perspective of Pesticide Use and Pest Management in Kuwait Agriculture: A Comprehensive Review

Open Access
Download PDF
AgroEnvironmental Sustainability
Mustapha F. A. Jallow

Abstract

The widespread overuse of pesticides in agriculture has generated increasing concerns about the negative effects of pesticides on human health and the environment. The review provides perspectives on the main trends regarding pesticide overuse in Kuwait and its potential impacts on human health and the environment. Factors driving the excessive use of pesticides, including climate change and the introduction of invasive pest species, and the challenges of adopting alternatives to chemical pesticides, are also reviewed. The review further outlines the status of an invasive pest species, the South American tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), in Kuwait and the Middle East, and efforts to develop sustainable management strategies for the pest. Finally, recommendations on how to achieve sustainable control of the T. absoluta and other pests using integrated pest management strategies, and the comprehensive intervention measures to be adopted to reduce health and environmental risks of pesticides are discussed. Although the review has focused on Kuwait, it is relevant in other countries where greater and widespread use of synthetic pesticides to manage pests is a dominant trend.

Keywords

human health impact invasive species Kuwait agriculture pest management pesticide overuse

References

  1. Abdul Razzak, A. S., Al-Yasiri, H., & Fadhil, H. Q. (2010). First record of tomato borer (tomato moth) Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on tomato crop in Iraq. Arab Near East Plant Protection Newsletter, 51, 34. [Google Scholar]
  2. Abdul-Ridha, M., Alwan, S., Helal, S., & Aziz, K. (2012). Alternative hosts of South American tomato moth Tuta absoluta (Gelechiidae: Lepidoptera) in some tomato farms of Najaf Province. Euphrates Journal of Agriculture Science, 4, 130–137. [Google Scholar]
  3. Al-Hatim, H. Y., Alrajhi, D., & Al-Rajab, A. J. (2015). Detection of pesticide residue in dams and well water in jazan area, saudi arabia. American Journal of Environmental Sciences, 11(5), 358-365. https://doi.org/10.3844/ajessp.2015.358.365 [Google Scholar]
  4. Al-Mazeedi, H. M., Abbasa, A. B., Al-Jouhar, W. Y., Al-Mufty, S. A., & Al-Mendicar, Y. A. (2012). Food safety review in the state of Kuwait as a part of Arab Gulf Area. International Journal of Food Safety, 14, 54–69. https://doi.org/10.1504/IJFSNPH.2015.067561 [Google Scholar]
  5. Alshemmari, H., Al-Shareedah, A. E., Rajagopalan, S., Talebi, L. A. L. A., & Hajeyah, M. (2021). Pesticides driven pollution in Kuwait: The first evidence of environmental exposure to pesticides in soils and human health risk assessment. Chemosphere, 273, 129688. https://doi.org/10.1016/j.chemosphere.2021.129688 [Google Scholar]
  6. Asghar, U., Malik, M. F., & Javed, A. (2016). Pesticide exposure and human health: A review. Journal of Ecosystem and Ecography, S5, 005. https://doi.org/10.4172/2157-7625.S5-005 [Google Scholar]
  7. Bashour, I. (2007). Pesticides, fertilizers and food safety. In Arab Environment: Future Challenges (pp. 137–145). Arab Forum for Environment and Development. [Google Scholar]
  8. Bempah, C. K., Donkor, A. K., Yeboah, P. O., Dubey, B., & Osei-Fosu, P. (2011). A preliminary assessment of consumer exposure to organochlorine pesticides in fruits and vegetables and the potential health risk in Accra Metropolis, Ghana. Food Chemistry, 128, 1058–1065. https://doi.org/10.1016/j.foodchem.2011.04.013 [Google Scholar]
  9. Biondi, A., Guedes, R. N. C., Wan, F. H., & Desneux, N. (2018). Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: Past, present, and future. Annual Review of Entomology, 63, 239–258. https://doi.org/10.1146/annurev-ento-031616-034933 [Google Scholar]
  10. Boemare, N. (2002). Biology, taxonomy and systematics of Photorhabdus and xenorhabdus . In Entomopathogenic nematology (pp. 35-56). CABI Publishing. https://doi.org/10.1079/9780851995670.0035 [Google Scholar]
  11. CABI/EPPO. (2013). Tuta absoluta distribution map (Map 723). CABI Publishing. https://doi.org/10.1079/DMPP/2009316738 [Google Scholar]
  12. Cecchi, A., Rovedatti, M., Sabino, G., & Magnarelli, G. (2012). Environmental exposure to organophosphate pesticides: Assessment of endocrine disruption and hepatotoxicity in pregnant women. Ecotoxicology and Environmental Safety, 80, 280–287. https://doi.org/10.1016/j.ecoenv.2012.03.008 [Google Scholar]
  13. Chailleux, A., Desneux, N., Seguret, J., & Maignet, P. (2012). Assessing European egg parasitoids as a means of controlling the invasive South American tomato pinworm Tuta absoluta. PLOS ONE, 7(10), e48068. https://doi.org/10.1371/journal.pone.0048068 [Google Scholar]
  14. Cocco, A., Deliperi, S., & Delrio, G. (2013). Control of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in greenhouse tomato crops using the mating disruption technique. Journal of Applied Entomology, 137, 16–28. https://doi.org/10.1111/j.1439-0418.2012.01735.x [Google Scholar]
  15. Codex Alimentarius Commission. (2015). Pesticide residues in food and feed. http://www.fao.org/fao-who-codexalimentarius/standards/pestres/en [Google Scholar]
  16. Damalas, A., & Hashemi, S. M. (2010). Pesticide risk perception and use of personal protective equipment among young and old cotton growers in Northern Greece. Agrociencia, 44, 363–371. [Google Scholar]
  17. Desneux, N., Luna, N. G., Guillemaud, T., & Urbaneja, A. (2011). The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: The new threat to tomato world production. Journal of Pest Science, 84, 403–408. https://doi.org/10.1007/s10340-011-0398-6 [Google Scholar]
  18. Desneux, N., Wajnberg, E., Wyckhuys, K. A. G., Burgio, G., Arpaia, S., Narvaez-Vasquez, C. A., Gonzalez-Cabrera, J., Ruescas, D. C., Tabone, E., Frandon, J., et al. (2010). Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. Journal of Pest Science, 83, 197–215. https://doi.org/10.1007/s10340-010-0321-6 [Google Scholar]
  19. Droogers, P., Immerzeel, W. W., Terink, W., Hoogeveen, J., Bierkens, M. F. P., van Beek, L. P. H., & Debele, B. (2012). Water resources trends in middle east and north africa towards 2050. Hydrology and Earth System Sciences, 16(9), 3101-3114. https://doi.org/10.5194/hess-16-3101-2012 [Google Scholar]
  20. Fan, L., Niu, H., Yang, X., Qin, W., Bento, C. P., Ritsema, C. J., & Geissen, V. (2015). factors affecting farmers' behaviour in pesticide use: insights from a field study in northern china. Science of The Total Environment, 537, 360-368. https://doi.org/10.1016/j.scitotenv.2015.07.150 [Google Scholar]
  21. FAO. (2013). International code of conduct on pesticide management. Food and Agriculture Organization, Access from http//www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Code/CODE_2014Sep_ENG.pdf on 16 November 2025. [Google Scholar]
  22. FAO. (2019). Corporate statistical database, online statistical service. Food and Agriculture Organization, Access from http://www.fao.org/faostat/en/#home on September 2, 2025. [Google Scholar]
  23. Feld, L., Hjelmsø, M. H., Nielsen, M. S., Jacobsen, A. D., Rønn, R., Ekelund, F., Krogh, P. H., Strobel, B. W., & Jacobsen, C. S. (2015). Pesticide side effects in an agricultural soil ecosystem as measured by amoa expression quantification and bacterial diversity changes. PLOS ONE, 10(5), e0126080. https://doi.org/10.1371/journal.pone.0126080 [Google Scholar]
  24. Gangemi, S., Gofita, E., Costa, C., Teodoro, M., Briguglio, G., Nikitovic, D., Tzanakakis, G., Tsatsakis, A. M., Wilks, M. F., Spandidos, D. A., & Fenga, C. (2016). Occupational and environmental exposure to pesticides and cytokine pathways in chronic diseases (review). International Journal of Molecular Medicine, 38(4), 1012-1020. https://doi.org/10.3892/ijmm.2016.2728 [Google Scholar]
  25. Garcia-Del-Pino, Alabern, F., X., & Morton, A. (2011). Efficacy of entomopathogenic nematodes against the larvae and adults of the tomato leafminer Tuta absoluta in soil treatments and their compatibility with the insecticides used against this insect. IOBC/WPRS Bulletin, 66, 267–270. [Google Scholar]
  26. Gharekhani, G. H., & Salek-Ebrahimi, H. (2014). Life table parameters of Tuta absoluta (Lepidoptera: Gelechiidae) on different varieties of tomato. Journal of Economic Entomology, 107(5), 1765-1770. https://doi.org/10.1603/ec14059 [Google Scholar]
  27. Giustolin, T. A.,Vendramim, J. D., Alves, S. B., & Vieira, S. A. (2001). Pathogenicity of Beauveria bassiana (Bals.) Vuill. to Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) reared on two genotypes of tomato. Neotropical Entomology, 30, 417–421. [Google Scholar]
  28. Grewal, P. S., Ehlers, R. U., & Shapiro-Ilan, D. I. (2005). Nematodes as Bio-control Agents, CABI Publishing, Oxon, UK. [Google Scholar]
  29. Gross, K., & Rosenheim, J. A. (2011). Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Ecological Applications, 21(7), 2770-2780. https://doi.org/10.1890/11-0118.1 [Google Scholar]
  30. Guedes, R. N. C. (2016). Insecticide resistance, control failure likelihood and the first law of geography. Pest Management Science, 73(3), 479-484. https://doi.org/10.1002/ps.4452 [Google Scholar]
  31. Hajjar, J. M. (2012). The persisted organic pesticides pollutant (POPs) in the Middle East Arab Countries. International Journal of Agronomy and Plant Production, 3, 11–18. [Google Scholar]
  32. Handford, C. E., Elliott, C. T., & Campbell, K. (2015). A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integrated Environmental Assessment and Management, 11(4), 525-536. https://doi.org/10.1002/ieam.1635 [Google Scholar]
  33. Huang, T., Liu, J., Song, F., Shu, C., Qiu, J., Guan, X., Huang, D., & Zhang, J. (2004). Identification, distribution pattern of is231elements in Bacillus thuringiensis and their phylogenetic analysis. FEMS Microbiology Letters, 241(1), 27-32. https://doi.org/10.1016/j.femsle.2004.09.037 [Google Scholar]
  34. Jallow, M. F. A., Dahab, A. A., Albaho, M. S., & Devi, V. Y. (2022). efficacy of nesidiocoris tenuis (hemiptera: miridae) and bacillus thuringiensis (berliner) for controlling tuta absoluta (lepidoptera: gelechiidae) in greenhouse tomato crops under kuwait hot desert climate. International Journal of Pest Management, 70(4), 1149-1159. https://doi.org/10.1080/09670874.2022.2162998 [Google Scholar]
  35. Jallow, M. F. A., Dahab, A. A., Albaho, M. S., & Devi, V. Y. (2019a). efficacy of some biorational insecticides against tuta absoluta (meyrick) (lepidoptera: gelechiidae) under laboratory and greenhouse conditions in kuwait. Journal of Applied Entomology, 143(3), 187-195. https://doi.org/10.1111/jen.12588 [Google Scholar]
  36. Jallow, M. F. A., Awadh, D. G., Albaho, M. S., Devi, V. Y., & Thomas, B. M. (2017b). Pesticide knowledge and safety practices among farm workers in Kuwait: Results of a survey. International Journal of Environmental Research and Public Health, 14, 330. https://doi.org/doi:10.3390/ijerph14040340. [Google Scholar]
  37. Jallow, M. F. A., Awadh, D. G., Albaho, M. S., Devi, V. Y., & Ahmad, N. (2017c). Monitoring of pesticide residues in commonly used fruits and vegetables in kuwait. International Journal of Environmental Research and Public Health, 14(8), 833. https://doi.org/10.3390/ijerph14080833 [Google Scholar]
  38. Jallow, M. F. A., Awadh, D. G., Albaho, M. S., Devi, V. Y., & Thomas, B. M. (2017a). Pesticide risk behaviors and factors influencing pesticide use among farmers in kuwait. Science of The Total Environment, 574, 490-498. https://doi.org/10.1016/j.scitotenv.2016.09.085 [Google Scholar]
  39. Jallow, M. F. A., Dahab, A. A., Albaho, M. S., Devi, V. Y., Jacob, J., & Al-Saeed, O. (2020). efficacy of mating disruption compared with chemical insecticides for controlling tuta absoluta (lepidoptera: gelechiidae) in kuwait. Applied Entomology and Zoology, 55(2), 213-221. https://doi.org/10.1007/s13355-020-00673-y [Google Scholar]
  40. Jallow, M. F. A., Dahab, A. A., Albaho, M. S., Devi, V. Y., Awadh, D. G., & Thomas, B. M. (2019a). baseline susceptibility and assessment of resistance risk to flubendiamide and chlorantraniliprole in tuta absoluta (lepidoptera: gelechiidae) populations from kuwait. Applied Entomology and Zoology, 54(1), 91-99. https://doi.org/10.1007/s13355-018-0598-0 [Google Scholar]
  41. Jin, S., Bluemling, B., & Mol, A. P. (2015). information, trust and pesticide overuse: interactions between retailers and cotton farmers in china. NJAS: Wageningen Journal of Life Sciences, 72-73(1), 23-32. https://doi.org/10.1016/j.njas.2014.10.003 [Google Scholar]
  42. Kogan, M. (1998). integrated pest management: historical perspectives and contemporary developments. Annual Review of Entomology, 43(1), 243-270. https://doi.org/10.1146/annurev.ento.43.1.243 [Google Scholar]
  43. Kuang, L., Hou, Y., Huang, F., Hong, H., Sun, H., Deng, W., & Lin, H. (2020). pesticide residues in breast milk and the associated risk assessment: a review focused on china. Science of The Total Environment, 727, 138412. https://doi.org/10.1016/j.scitotenv.2020.138412 [Google Scholar]
  44. Kuwait Agricultural Statistics. (2024). A survey on behalf of Kuwait Central Statistics Bureau, Safat, Kuwait, Accesses from http://www.csb.gov.kw/Socan_Statistic_EN.aspx?ID=42 on November 16, 2025. [Google Scholar]
  45. Lanphear, B. P. (2015). The impact of toxins on the developing brain. Annual Review of Public Health, 36, 211–230. https://doi.org/10.1146/annurev-publhealth-031912-114413 [Google Scholar]
  46. Lewis, W. J., van Lenteren, J. C., Phatak, S. C., & Tumlinson, J. H. (1997). A total system approach to sustainable pest management. Proceedings of the National Academy of Sciences of the United States of America, 94, 12243–12248. https://doi.org/10.1073/pnas.94.23.12243 [Google Scholar]
  47. Li, Z., & Jennings, A. (2017). Worldwide regulations of standard values of pesticides for human health risk control: A review. International Journal of Environmental Research and Public Health, 14, 826. https://doi.org/10.3390/ijerph14070826 [Google Scholar]
  48. Litchfield, M. H. (2005). Estimates of acute pesticide poisoning in agricultural workers in less developed countries. Toxicological Reviews, 24, 271–278. https://doi.org/10.2165/00139709-200524040-00006 [Google Scholar]
  49. Liu, Y. H., Li, S. L., Ni, Z. L., Qu, M. H., Zhong, D. L., Ye, C. F., & Tang, F. B. (2016). Pesticides in persimmons, jujubes and soil from China: Residue levels, risk assessment and relationship between fruits and soils. Science of the Total Environment, 542, 620–628. https://doi.org/10.1016/j.scitotenv.2015.10.148 [Google Scholar]
  50. Lozowicka, B. (2015). Health risk for children and adults consuming apples with pesticide residue. Science of the Total Environment, 502, 184–198. https://doi.org/10.1016/j.scitotenv.2014.09.026 [Google Scholar]
  51. Lundin, O., Rundlöf, M., Smith, H. G., Fries, I., & Bommarco, R. (2015). Neonicotinoid insecticides and their impacts on bees: A systematic review of research approaches and identification of knowledge gaps. PLOS ONE, 10(8), e0136928. https://doi.org/10.1371/journal.pone.0136928 [Google Scholar]
  52. Matthews, G. (2008). Attitudes and behaviors regarding use of crop protection products—A survey of more than 8500 smallholders in 26 countries. Crop Protection, 27, 834–846. https://doi.org/10.1016/j.cropro.2007.10.013 [Google Scholar]
  53. Molla, O., Monton, H., Vanaclocha, P., Beitia, F., & Urbaneja, A. (2009). Predation by the mirids Nesidiocoris tenuis and Macrolophus pygmaeus on the tomato borer Tuta absoluta. IOBC/WPRS Bulletin, 49, 209–214. [Google Scholar]
  54. Naselli, M., Biondi, A., Garzia, G. T., Desneux, N., Russo, A., et al. (2017). Insights on food webs associated with the South American pinworm. Pest Management Science, 73, 1352–1357. https://doi.org/10.1002/ps.4562 [Google Scholar]
  55. Osman, K. A., Al-Humaid, A. M., & Al-Redhaiman, K. N. (2010). Monitoring of pesticide residues in vegetables marketed in Al-Qassim region, Saudi Arabia. Ecotoxicology and Environmental Safety, 73, 1433–1439. https://doi.org/10.1016/j.ecoenv.2010.05.020 [Google Scholar]
  56. Oztemiz, S. (2013). Population of Tuta absoluta and natural enemies after releasing on tomato-grown greenhouse in Turkey. African Journal of Biotechnology, 12, 1882–1887. [Google Scholar]
  57. Quijano, L., Yusà, V., Font, G., & Pardo, O. (2016). Chronic cumulative risk assessment of the exposure to organophosphorus, carbamate and pyrethroid and pyrethrin pesticides through fruit and vegetables consumption in the region of valencia (spain). Food and Chemical Toxicology, 89, 39-46. https://doi.org/10.1016/j.fct.2016.01.004 [Google Scholar]
  58. Ramadan, M. F. A., Abdel-Hamid, M. M. A., Altorgoman, M. M. F., AlGaramah, H. A., Alawi, M. A., Shati, A., Shweeta, H. A., & Awwad, N. S. (2020). Evaluation of pesticide residues in vegetables from the Asir Region, Saudi Arabia. Molecules, 25, 205. https://doi.org/10.3390/molecules25010205 [Google Scholar]
  59. Saeed, T., Sawaya, W. N., Ahmad, N., Rajagopal, S., Al-Omair, A., & Al-Awadhi, F. (2001). Chlorinated pesticide residues in the total diet of Kuwait. Food Control, 12, 91–98. https://doi.org/10.1016/S0956-7135(00)00025-6 [Google Scholar]
  60. Saeed, T., Sawaya, W. N., Ahmad, N., Rajgopal, S., & Al-Omair, A. (2005). Organophosphorus pesticide residue in the total diet of Kuwait. Arab Journal of Science and Engineering, 30, 17–27. [Google Scholar]
  61. Sawaya, W., Al-Awadhi, F. A., Saeed, T., Al-Omair, A., Ahmad, N., Husain, A., Khalafawi, S., Al-Omirah, H., Dashti, B., Al-Amiri, H., & Al-Saqer, J. (1999a). Kuwait total diet study: Dietary intake of organochlorine, carbamate, benzimidazole and phenylurea pesticide residues. Journal of AOAC International, 82, 1458–1465. https://doi.org/10.1093/jaoac/82.6.1458 [Google Scholar]
  62. Sawaya, W., Al-Wadhi, F. A., Saeed, T., Al-Omair, A., Hussain, H., Ahmad, N., Al-Omair, H., Al-Zenki, S., Khalafawi, S., Al-Otaibi, J., & Al-Amiri, H. (2000). Dietary intake of organophosphate pesticides in Kuwait. Food Chemistry, 89, 331–338. https://doi.org/10.1016/S0308-8146(99)00258-7 [Google Scholar]
  63. Sawaya, W., Al-Wadhi, F. A., Saeed, T., Al-Omair, H., Hussain, H., Khalafawi, S., Al-Zenki, S., Al-Amiri, H., Al-Otaibi, J., & Al-Saqer, J. (1999b). Dietary intake of pesticides: State of Kuwait total diet study. Food Additives and Contaminants, 16, 473–480. https://doi.org/10.1080/026520399283768 [Google Scholar]
  64. Shakerkhatibi, M., Mosaferi, M., Asghari Jafarabadi, M., Lotfi, E., & Belvasi, M. (2014). Pesticide residue in drinking groundwater resources of rural areas in the northwest of Iran. Health Promotion Perspectives, 4, 195–205. https://doi.org/10.5681/hpp.2014.026 [Google Scholar]
  65. Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., et al. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1, 1446. https://doi.org/10.1007/s42452-019-1485-1 [Google Scholar]
  66. Silva, V., Mol, H. G., Zomer, P., Tienstra, M., Ritsema, C. J., & Geissen, V. (2019). Pesticide residues in European agricultural soils: A hidden reality unfolded. Science of the Total Environment, 653, 1532–1545. https://doi.org/10.1016/j.scitotenv.2018.10.441 [Google Scholar]
  67. Siqueira, H. A. A., Guedes, R. N. C., & Picanço, M. C. (2000). Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agricultural and Forest Entomology, 2, 147–153. https://doi.org/10.1046/j.1461-9563.2000.00062.x [Google Scholar]
  68. Siviter, H., & Muth, F. (2020). Do novel insecticides pose a threat to beneficial insects? Proceedings of the Royal Society B: Biological Sciences, 287, 20201265. https://doi.org/10.1098/rspb.2020.1265 [Google Scholar]
  69. Staten, R. S., El-Lissy, O., & Antilla, L. (1997). Successful area-wide program to control pink bollworm by mating disruption. In Insect Pheromone Research: New Directions (pp. 383–397). Inter Thomson Publication. [Google Scholar]
  70. Sun, S., Virinder, S., Rong, Y., & Zheng, Y. (2018). Pesticide pollution in agricultural soils and sustainable remediation methods: A review. Current Pollution Reports, 4, 1–11. https://doi.org/10.1007/s40726-018-0092-x [Google Scholar]
  71. Syafrudin, M., Kristanti, R. A., Yuniarto, A., Hadibarata, T., Rhee, J., Al-onazi, W. A., Algarni, T. S., Almarri, A. H., & Al-Mohaimeed, A. M. (2021). Pesticides in Drinking Water—A Review. International Journal of Environmental Research and Public Health, 18(2), 468. https://doi.org/10.3390/ijerph18020468 [Google Scholar]
  72. USDA (2011). Maximum residue limit database. United States Department of Agriculture. http://www.fas.usda.gov/maximum-residue-limits-mrl-database [Google Scholar]
  73. Vacas, S., Alfaro, C., Primo, J., & Navarro-Llopis, V. (2011). Studies on the development of a mating disruption system to control the tomato leafminer, Tuta absoluta Povolny (Lepidoptera: Gelechiidae). Pest Management Science, 67, 1473–1480. https://doi.org/10.1002/ps.2202 [Google Scholar]
  74. Vacas, S., Lopez, J., Primo, J., & Navarro-Llopis, V. (2013). Response of Tuta absoluta (Lepidoptera: Gelechiidae) to different pheromone emission levels in greenhouse tomato crops. Environmental Entomology, 45, 1061–1068. https://doi.org/10.1603/EN13064 [Google Scholar]
  75. Van Damme, V., Berkvens, N., Moerkens, R., Berckmoes, E., Wittemans, L., et al. (2015). Overwintering potential of the invasive leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) as a pest in greenhouse tomato production in Western Europe. Journal of Pest Science, 88, 533–541. https://doi.org/10.1007/s10340-014-0636-9 [Google Scholar]
  76. WHO & FAO. (2019). Global situation of pesticide management in agriculture and public health. World Health Organization and Food and Agriculture Organization. https://apps.who.int/iris/handle/10665/329971 [Google Scholar]
  77. Yu, H., Chen, H., Yaofeng, Y., Hongkun, Z., YaoQing, X., & Uchaeva, M. (2024). Narrowing the gaps between perception and adoption behavior of integrated pest management by farmers: Incentive and challenge. Journal of Cleaner Production, 480, 144117. https://doi.org/10.1016/j.jclepro.2024.144117 [Google Scholar]

Similar Articles

1-10 of 79

You may also start an advanced similarity search for this article.