Mapping Gully Erosion Dynamics Near Ahilyanagar, Maharashtra: A Cloud-Based Geospatial Analysis Using Google Earth Engine

Open Access
Download PDF
AgroEnvironmental Sustainability
Mahadeo S. Jadhav

Abstract

Gully erosion represents a significant global environmental challenge, severely impacting land productivity, water resources, and ecological sustainability. The Nagar tehsil and the surrounding area of Ahilyanagar city in Maharashtra belong to semi-arid regions where gully erosion is a major threat to agriculture and water resources. This study used the Google Earth Engine (GEE) platform to map and assess gully erosion dynamics. By analyzing multi-temporal Sentinel-2 imagery, NDVI, Digital Elevation Models (DEMs), and other environmental data, researchers were able to accurately map gully-affected areas and identify the main factors contributing to their formation. A spatial analysis using a 5 km multi-ring buffer around Ahilyanagar city identified six gully erosion hotspots, revealing that about 40 villages in Nagar Tahsil are highly susceptible to erosion. The study found that the northeastern part of the region had the highest concentration of gullies, while the southern and southeastern parts had very few. The main causes were identified as both human activities, such as deforestation and unsustainable farming, and natural factors like steep slopes and drainage density. This research demonstrates that GEE is an effective, large-scale, and cost-efficient tool for mapping erosion. The findings provide a valuable framework for policymakers to implement targeted conservation strategies, directly supporting global Sustainable Development Goals (SDGs) and India's Land Degradation Neutrality (LDN) mission.

Keywords

geospatial analysis gully erosion mapping semi-arid region Sentinel-2

References

  1. Aliramaee, R., Rahmati, O., Mohammadi, F., & Soleimanpour, S. M. (2024). Object-based image analysis approach for gully erosion detection. In Remote Sensing of Soil and Land Surface Processes (pp. 331–343). Elsevier. https://doi.org/10.1016/B978-0-443-15341-9.00009-5 [Google Scholar]
  2. Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 [Google Scholar]
  3. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004 [Google Scholar]
  4. De Girolamo, A. M., & Gentile, F. (2016). Gully erosion processes in Mediterranean environments: A review. Geoderma Regional, 269-281. [Google Scholar]
  5. Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026 [Google Scholar]
  6. Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Scientific Data, 2(1), 150066. https://doi.org/10.1038/sdata.2015.66 [Google Scholar]
  7. Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961. https://doi.org/10.1016/j.gsf.2015.10.007 [Google Scholar]
  8. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 [Google Scholar]
  9. Hengl, T., Mendes De Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748 [Google Scholar]
  10. Huang, X., Xiong, L., Jiang, Y., Li, S., Liu, K., Ding, H., & Tang, G. (2023). Mapping gully affected areas by using Sentinel 2 imagery and digital elevation model based on the Google Earth Engine. CATENA, 233, 107473. https://doi.org/10.1016/j.catena.2023.107473 [Google Scholar]
  11. Joshi, V. U. (2014). Soil Loss Estimation by Field Measurements in the Badlands along Pravara River (Western India). Journal of the Geological Society of India, 83(6), 613–624. https://doi.org/10.1007/s12594-014-0090-6 [Google Scholar]
  12. Joshi, V. U. (2020). Application of Field-Monitoring Techniques to Determine Soil Loss by Gully Erosion in a Watershed in Deccan, India. In P. K. Shit, H. R. Pourghasemi, & G. S. Bhunia (Eds.), Gully Erosion Studies from India and Surrounding Regions (pp. 109–131). Springer International Publishing. https://doi.org/10.1007/978-3-030-23243-6_7 [Google Scholar]
  13. Karami, A., Khoorani, A., Noohegar, A., Shamsi, S. R. F., & Moosavi, V. (2015). Gully Erosion Mapping Using Object-Based and Pixel-Based Image Classification Methods. Environmental & Engineering Geoscience, 21(2), 101–110. https://doi.org/10.2113/gseegeosci.21.2.101 [Google Scholar]
  14. Kumar, R., Deshmukh, B., & Kumar, A. (2022). Using Google Earth Engine and GIS for basin scale soil erosion risk assessment: A case study of Chambal river basin, central India. Journal of Earth System Science, 131(4), 228. https://doi.org/10.1007/s12040-022-01977-z [Google Scholar]
  15. Lal, R. (2015). The Encyclopedia of Soil Science. CRC Press. [Google Scholar]
  16. Lei, X., Chen, W., Avand, M., Janizadeh, S., Kariminejad, N., Shahabi, H., Costache, R., Shahabi, H., Shirzadi, A., & Mosavi, A. (2020). GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of Iran. Remote Sensing, 12(15), 2478. https://doi.org/10.3390/rs12152478 [Google Scholar]
  17. Liu, K., Ding, H., Tang, G., Na, J., Huang, X., Xue, Z., Yang, X., & Li, F. (2016). Detection of Catchment-Scale Gully-Affected Areas Using Unmanned Aerial Vehicle (UAV) on the Chinese Loess Plateau. ISPRS International Journal of Geo-Information, 5(12), 238. [Google Scholar]
  18. Liu, K., Ding, H., Tang, G., Song, C., Liu, Y., Jiang, L., Zhao, B., Gao, Y., & Ma, R. (2018). Large-scale mapping of gully-affected areas: An approach integrating Google Earth images and terrain skeleton information. Geomorphology, 314, 13–26. https://doi.org/10.1016/j.geomorph.2018.04.011 [Google Scholar]
  19. Majhi, A., Bhattacharjee, P., Harris, A., Evans, M., & Shuttleworth, E. (2025). Gully erosion is a serious obstacle in India’s land degradation neutrality mission. Scientific Reports, 15(1), 6384. https://doi.org/10.1038/s41598-025-89613-w [Google Scholar]
  20. Majhi, A., Harris, A., Evans, M., & Shuttleworth, E. (2024a). Gullies and badlands of India: Genesis, geomorphology and land management. Earth Surface Processes and Landforms, 49(1), 82–107. https://doi.org/10.1002/esp.5579 [Google Scholar]
  21. Majhi, A., Harris, A., Evans, M., & Shuttleworth, E. (2024b). Gullies and badlands of India: Genesis, geomorphology and land management. Earth Surface Processes and Landforms, 49(1), 82–107. https://doi.org/10.1002/esp.5579 [Google Scholar]
  22. Milliman, J. D., & Farnsworth, K. L. (2011). Milliman, J. D., & Farnsworth, K. L. (2011). River discharge to the coastal ocean: A global synthesis. Cambridge University Press. [Google Scholar]
  23. Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1), 1–15. https://doi.org/10.1007/s12518-013-0120-x [Google Scholar]
  24. Pal, S. C., & Chakrabortty, R. (2019). Modeling of water induced surface soil erosion and the potential risk zone prediction in a sub-tropical watershed of Eastern India. Modeling Earth Systems and Environment, 5(2), 369–393. https://doi.org/10.1007/s40808-018-0540-z [Google Scholar]
  25. Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and environmental change: Importance and research needs. CATENA, 50(2–4), 91–133. https://doi.org/10.1016/S0341-8162(02)00143-1 [Google Scholar]
  26. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. Department of Agriculture, Agriculture Hand Book, No.703. [Google Scholar]
  27. Sheng, T. C. (1990). Watershed management field manual-Watershed survey and planning. FAO-Food and Agriculture Organisation of USA. [Google Scholar]
  28. Shrestha, D. P. (2018). Gully erosion: A review of causes, mechanisms, and control measures. Journal of Nepal Geographical Society, , 37(1), 1-15. [Google Scholar]
  29. Stokes, A., Norris, J. E., & Greenwood, J. R. (2008). Introduction to Ecological Solutions. In J. E. Norris, A. Stokes, S. B. Mickovski, E. Cammeraat, R. v. Beek, B. C. Nicoll, et al., Slope Stabiltiyt and Erosion Control: Ecotechnological Solutions (pp. 1-8). Dordrecht: Springer. [Google Scholar]
  30. Titti, G., Napoli, G. N., Conoscenti, C., & Lombardo, L. (2022). Cloud-based interactive susceptibility modeling of gully erosion in Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 115, 103089. [Google Scholar]
  31. Truong, P., Tan, L. T., & Dao, T. M. (2008). , Tan, L. T., & Dao, T. M. (2008). Vetiver Grass Technology for the Stabilization of Degraded Lands, Environment and Disaster Management. Dalat, Vietnam: The Vetiver Network. The Vetiver Network. [Google Scholar]
  32. Valentin, C., Poesen, J., & Li, Y. (2005). Gully erosion: Impacts, factors and control. CATENA, 63(2–3), 132–153. [Google Scholar]
  33. Vanmaercke, M., Poesen, J., Van , M. B., Demuzere, M., De Geeter, S., & Zgabay, S. (2014). Gully erosion in drylands: A global review. Earth-Science Reviews, 1, 18-35. [Google Scholar]
  34. Wang, R., Zhang, S., Pu, L., Yang, J., Yang, C., Chen, J., Guan, C., Wang, Q., Chen, D., Fu, B., & Sang, X. (2016). Gully Erosion Mapping and Monitoring at Multiple Scales Based on Multi-Source Remote Sensing Data of the Sancha River Catchment, Northeast China. ISPRS International Journal of Geo-Information, 5(11), 200. https://doi.org/10.3390/ijgi5110200 [Google Scholar]
  35. Xu, M., Wang, M., Wang, F., Ji, X., Liu, Z., Liu, X., Zhao, S., & Wang, M. (2025). Extraction of gully erosion using multi-level random forest model based on object-based image analysis. International Journal of Applied Earth Observation and Geoinformation, 137, 104434. https://doi.org/10.1016/j.jag.2025.104434 [Google Scholar]

Similar Articles

1-10 of 75

You may also start an advanced similarity search for this article.