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Abstract 
Spatial mapping of the soil gives the distribution patterns of the nutrients, which is crucial for 

integrated nutrient management, site-specific crop selection, water resource management, and 

adaptation to climate change for optimizing productivity. This research aims to identify the spatial 

variability of soil chemical properties in the Dailekh district of Karnali Province, Nepal, by preparing 

a map in a raster setting. A total of 204 samples were collected using stratified random sampling 

techniques using Google Earth Pro and were analyzed using IBM SPSS 27.0 and Arc Map 10.2 

software. The classical statistical method was used for the descriptive analysis of sampled data. The 

Quantile Quantile (QQ) plot was made to visualize the distribution pattern, and non-normal data 

were log-transformed to match the straight line. Before making a map, sampled datasets were 

examined using the trend analysis feature of Arc Map using second-order polynomials in 3D 

scattered plots. The widely used interpolation technique, Ordinary kriging of two Exponential and 

Circular models, was applied to data and cross-validated with minimum estimated errors. Fertility 

mapping of parameters results in more than 81%, 56 %, and 57% of the areas covered by nitrogen, 

phosphorus, and potassium, with medium in status. Similarly, organic matter has low content shades 

in 65% of areas and moderately acidic pH in 49% of areas. This research supports decision-making 

for nutrient distribution across agricultural fields and sustainable land management for precision 

farming. 
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Statement of Sustainability: Spatial soil fertility mapping plays a crucial role in achieving multiple Sustainable Development Goals 

(SDGs) by providing a detailed assessment of soil nutrient levels, enabling farmers to apply fertilizer efficiently and enhance soil 

health. This directly supports SDG 2 (Zero Hunger) by improving crop yields and food security. Healthier soil stores more carbon, 

aiding SDG 13 (Climate Action) by mitigating greenhouse gas emissions. Additionally, sustainable soil management helps combat 

desertification and land degradation, aligning with SDG 15 (Life on Land) to protect terrestrial ecosystems. 

1. Introduction 

Soil fertility mapping plays a vital role in precision farming by enabling farmers to optimize fertilizer use, enhance 

productivity, and minimize soil degradation (Malla et al., 2020; Chalise et al., 2019). However, natural calamities such as 

floods, droughts, and landslides can damage the soil by causing erosion, nutrient depletion, compaction, and 

contamination. Soil mapping creates detailed maps of soil properties and can help to identify the most vulnerable areas 

to such disasters (Oli et al., 2020). Mapping also allows farmers to apply fertilizer in the right amount in the right place 

based on the demand for crops, the selection of suitable crops for a specific soil, and site-specific management for long-

term soil health (Chakraborty et al., 2024; Jena et al., 2024b). Geographic Information Systems (GIS) have widely adopted 

geostatistical tools for spatial interpolation and visualization of soil properties across diverse landscapes by reflecting 

the exact ground condition into a single analysis (Ghimire et al., 2024). Different geostatistical interpolation methods 

such as kriging, Inverse Distance Weighted (IDW), and deterministic interpolation techniques such as Local Polynomial 

Interpolation (LPI), Radial Basis Function (RBF), and Empirical Bayes kriging (EBK) have been used for analysis (Bhunia et 

al., 2016; Kaur et al., 2020). For highly accurate spatial prediction, ordinary kriging is the best model due to its ability to 

account for irregular data and features like spatial autocorrelation using a semivariogram model for well-distributed 
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samples (Eldeiry and Garcia, 2012). However, one major challenge is creating an even distribution of sample data due 

to erratic topographical conditions in the mid-hills, leading to low spatial resolution (Zhang et al., 2015). Many traditional 

mapping methods fail to consider spatial dependencies and autocorrelation features, leading to interpolation errors, 

biased prediction, and misleading spatial patterns. Due to anthropogenic activities and land use patterns, soil properties 

such as organic matter, pH, and nitrogen vary considerably over short distances. That is why some models may struggle 

to capture small-scale heterogeneity (Ghimire et al., 2018; Trangmar et al., 1986).  

This study aims to map the spatial variability of soil chemical properties using a stable geostatistical model that has 

been cross-validated by calculating estimated errors. This information can be used to optimize productivity, crop 

suitability analysis, sustainable land use planning, environmental protection, and climate change adaptation.  

2. Materials and Methods 

2.1. Study Area 

The study was conducted in the Dailekh district of Karnali province, Nepal (Figure 1), located between 28° 35′ 00″ N 

to 29° 08′ 00″ N latitude and 81° 25′ 00″ E to 81° 53′ 00″ E longitude. The district comprises four municipalities and seven 

rural municipalities scattered across the 148.350 ha area. The elevation of the study area ranges from 539 to 4009 meters 

(m), and it is present in the hilly zone, with slope ranging from 0° to 75.58°. Due to elevation differences, three types of 

climate patterns were found: tropical up to 1000 m elevation covers 16% of the area, subtropical 1000 to 2000 m covers 

69%, and temperate >2000 m covers 15% of the area (Karki et al., 2015). The study region gets 1500 mm of precipitation 

annually and 4°c to 34°c of temperature. The major crops, like maize, paddy, and millet, produced a good harvest in the 

study region. 

 
Figure 1. Map of Nepal showing the study area. 

2.2. Soil Sampling Techniques 

A total of 204 soil samples were collected using stratified random sampled locations within 11 municipalities of the 

study area based on altitude variation, slope, and land unit types. A digital elevation model downloaded from the USGS 

Earth Explore (https://earthexplorer.usgs.gov/) was used to calculate the slope and aspect to locate the soil point on the 

map. In field conditions, the soil pit was identified using Google Earth Pro, and a georeferenced soil auger was driven 

to collect the soil from the required depth of 10- 20 cm. The many-core samples were bulked into composite samples 

by removing and mixing each quadrate. The collected samples were brought to the Regional Laboratory of Karnali 

province, Nepal, to characterize chemical properties. 

https://www.sagens.org/journal/agens
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2.3. Soil Analysis 

The soil's chemical properties, like pH, organic matter, total nitrogen, phosphorus, and potassium, were analyzed in 

a laboratory. The potentiometric method was used to determine the pH value (Jackson, 1967). The organic carbon was 

determined using the Walkley and Black wet digestion method (Walkley and Black, 1934), and the obtained value was 

multiplied by the constant number of 1.72 to calculate the organic matter content (Malla et al., 2020). The total nitrogen 

was determined by using wet digestion in a Kjeldahl distillation unit (Bremner and Mulvaney, 1982). The available 

phosphorus and potassium were measured using Olsen's bicarbonate and ammonium acetate method in a flame 

photometer, respectively (Olsen et al., 1954; Jackson, 1967). 

2.4. Analytic Statistical Analysis 

Explorative analysis of the data was done in IBM SPSS 27.0 released Software. For each of the soil properties, the 

statistical attributes such as minimum, maximum, mean, standard deviation, coefficient of variation, skewness, kurtosis, 

and median were subjected to analysis. The simple graphical Quantile Quantile (QQ) plot was produced to visualize the 

mostly deviated data and normal distribution pattern of the datasets. The non-normal data were brought to log 

transformation to stabilize the variance within data and recalculated the normality test. 

2.5. Geostatistical Analysis 

The spatial analysis was carried out in ArcGIS 10.2 software. The geospatial interpolation technique called Ordinary 

kriging was used to calculate the spatial variability (Panday et al., 2019). Ordinary kriging uses the spatial auto-correction 

feature by considering the distance and degree of variation of known data attributes by using a semivariogram model 

(Goovaerts, 1997). The formula of semivariogram is: 

Y(h) =
1

2N(h)
∑ [z(uα) − z(uα + h)]2N(h)

α=1           (1) 

Where Y(h) is the semivariogram value at distance h, N (h) is the number of data pairs located by the distance h, 

z(uα) is the value of the variable at the location (uα), and z(uα + h) is the value of a variable at another location separated 

by distance h. Different semivariogram models that best fit with data were used for interpolation. Two empirical models, 

named Circular and Exponential, were fit with data, which were explained in the following equations (Mokarram and 

Sathyamoorthy, 2016). 

Y(h) = c0 + c (1 −
2

π
cos−1 (

h

a
)) + √1 −

h2

a2          (2) 

Y(h) = c0 + c (1 − exp (
−h

a
))            (3) 

Where C0 is the nugget variance, C is the partial sill, and a is the spatial dependency range to reach the sill (C0+C). 

Nugget represents the variance at a small distance and accounts for the measurement of spatial changes at a distance 

smaller than the sampling resolution (Tesfahunegn et al., 2011). Sill represents the total variance in the data, indicating 

that beyond this range, there is no further correlation. Partial sill is the lag distance at which one variable does not 

influence the neighboring value, i.e., variability that can be explained by spatial autocorrelation (Ramzan et al., 2017). 

3. Results and Discussion 

3.1. Descriptive Statistics of Soil Properties 

The summary of the descriptive statistics of nitrogen, phosphorus, potassium, organic matter, and soil pH status is 

presented in Table 1. The coefficient of variation (CV) was used to interpret the heterogeneity of the data. The greatest 

and least CV was obtained from the phosphorus (123.99%) and pH (11.95%), respectively. Similar research on fertility 

mapping in Gulmi figured out a 100.09% variation in phosphorus and 6.30% in pH (Ghimire et al., 2024). In the study 

region, the concentration of nitrogen varied from 0.01% to 0.38%, with a mean value of 0.12 (Table 1). Out of the total 

area of the district, 81.15% of the area is medium (0.10-0.20), and 18.85% is low (0.05-0.10) in the status (Table 2 and 

Figure 5). Similarly, the mapping of nitrogen in Dhanusha revealed that 68.91% of the area is medium in range (Yadav 

et al., 2022). The potassium content varied from 0.39 to 619.21, with a mean value of 72.62 (Table 1). More than 56% of 

the area is medium (30-55 kg/ha), and only 0.85% is very high (>110 kg/ha) in the available potassium (Table 2). The 

https://www.sagens.org/journal/agens
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concentration of potassium ranges from 2.16 to 2426.10, with a mean value of 339.11 (Table 1). Soil fertility mapping 

for the potassium reveals that 57.40% of the area is medium (110-280 kg/ha), and 41.62% is high (280-504 kg/ha) (Table 

2 and Figure 5). Statistics of organic matter show that OM ranges from 0.10 to 6.51 with a mean value of 2.38. This 

indicates that 65.05% of the area is low (1-2.5%), and 34.78% is medium in organic matter (Table 2 and Figure 5). The 

least variable parameter pH ranges from 4.34 to 7.80 with a mean of 5.86 (Table 1). More than 49% of the area is 

moderately acidic (4.5 -5.5), 27% is strongly acidic (<4.5), and only 9.51% is neutral in the pH content (Table 2 and Figure 

5).  

Table 1. Descriptive statistics of soil chemical properties of Dailekh district, Nepal. 

Parameters Minimum Maximum Mean SD CV Skewness Kurtosis Median 

N 0.01 0.38 0.12 0.07 60.00 0.82 3.65 0.11 

P2O5 0.39 619.21 72.62 90.04 123.99 2.83 13.68 38.65 

P2O5
* -0.94 6.42 3.69 1.14 30.89 -0.30 3.69 4.54 

K2O 2.16 2426.10 339.11 339.46 100.10 2.58 12.27 238.80 

K2O* 0.77 7.79 5.40 1.00 18.52 -0.84 5.49 5.47 

OM 0.10 6.51 2.38 1.42 59.66 0.64 2.95 2.17 

pH 4.34 7.80 5.86 0.70 11.95 0.45 2.66 5.80 

pH* 1.46 2.05 1.76 0.11 6.25 0.19 2.53 1.75 

N = Nitrogen, P2O5 = Phosphorus, K2O = Potassium, OM = Organic matter, SD = Standard deviation, CV = Coefficient of variation (%), and * = Log 

transformed. 

The Simple Quantile-Quantile (QQ) graphical method was used to examine the normal distribution of the data by 

comparing the expected normal value with the observed value (Augustin et al., 2012). Q-Q plots of the laboratory data 

are presented in Figure 2. The variable that matches the normal distribution lies in a straight diagonal line. Most nitrogen 

and organic matter data follow a straight line, except a few samples deviated.  

 
Figure 2. Normal Q-Q plot of the selected parameters. 

https://www.sagens.org/journal/agens
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3.2. Trend analysis 

 The trend analysis of the data was done in the geostatistical tool of ArcGIS10.2 software. The trend represents the 

three-dimensional perspectives of the data in which polynomials are fit through scatter plots. In Figure 3, the X and Y 

planes represent the soil sample, and the Z plane represents the chemical properties of the soil. The green and blue 

lines represent the trend in X, Z, and Y, Z planes. The global trend exists when curved lines fit with the data. The U-

shaped curve in the trend shows the second-order polynomial that fits with the data. The analysis results show that 

parameters such as nitrogen, phosphorus, organic matter, and pH have a strong direction trend effect. This effect can 

be due to vegetation cover, land uses land cover, and topographic conditions. But, the potassium shows no direction 

trend. Before applying the normalization, data must be fitted with a second-order polynomial to create an accurate map 

(Tesfahunegn et al., 2011). 

 
Figure 3. Trend analysis of the sampled data (a) Nitrogen, (b) Phosphorus, (c) Potassium, (d) Organic matter, and (e) soil pH. 

Table 2. Areas covered by soil parameters in different ranks given by the Soil Management Directorate, Department of Agriculture 

for Hills. 

Parameters Unit Rank Description Area (ha) Area (%) 

N % <0.05 Very low - - 

0.05-0.10 Low 27958.61 18.85 

0.10-0.20 Medium 120391.02 81.15 

0.20-0.40 High - - 

>0.40 Very high - - 

P2O5 Kg/ha <10 Very Low - - 

10-30 Low 35150.85 23.69 

30-55 Medium 83167.99 56.06 

55-110 High 28767.13 19.39 

>110 Very high 1263.31 0.85 

K2O Kg/ha <55 Very low - - 

55-110 Low 1386.62 0.93 

110-280 Medium 85149.78 57.40 

280-504 High 61740.49 41.62 

>504 Very high 72.77 0.05 

OM % <1 Very low 262.44 0.18 

1-2.5 Low 96497.51 65.05 

2.5-5.0 Medium 51589.29 34.78 

5.0-10.0 High - - 

>10.0 Very high - - 

pH 
 

<4.5 Strongly acidic 40470.91 27.28 

4.5-5.5 Moderately acidic 72949.26 49.17 

5.5-6.5 Slightly acidic 20824.92 14.04 

6.5-7.5 Neutral 14104.89 9.51 

>7.5 Strongly alkaline - - 

https://www.sagens.org/journal/agens
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3.3. Spatial Dependency and Estimated Error  

 The geospatial semivariogram models named Exponential and Circular were best fit with the data. The parameters 

phosphorus, potassium, and organic matter fit with the circular model, while nitrogen and soil pH fit with the Exponential 

model (Figure 4). Cross-validation of the experimental model was done by calculating and comparing the estimated 

errors, such as root mean square error (RMSE), mean square error (MSE), root mean square standardized error (RMSSE), 

and average standard error (ASE) (Table 3). The spatial dependence represents the similarity and dissimilarity of soil 

properties with distance. The nugget-to-silt ratio was used to identify the spatial dependency (Ramzan et al., 2017). The 

ratio >25 represents strong, 25 to 75 is moderate, and >75 is weak, according to Cambardella et al (1994). The 

parameters phosphorus, potassium, and organic matter show weak dependency (i.e., dissimilar data with distance), and 

nitrogen and pH exhibit moderate spatial dependency, which means similar data with the distance (Table 3). 

Table 3. Values of model parameters for best-fit semivariogram. 

Parameters Model Nugget  Partial sill Sill Nugget/sill Spatial dependency Estimated error 

RMSE MSE RMSSE ASE 

N Exponential 0.199 0.259 0.457 43.42 Moderate 0.564 -0.003 1.010 0.557 

P2O5
* Circular 1.086 0.145 1.231 88.23 Weak 88.510 -0.034 0.863 127.270 

K2O* Circular 0.965 0.106 1.072 90.09 Weak 338.070 0.034 0.631 562.660 

OM Circular 1.769 0.354 2.123 83.34 Weak 1.433 0.004 1.022 1.404 

pH* Exponential 0.006 0.007 0.013 43.76 Moderate 0.563 -0.007 1.023 0.561 

 

 
Figure 4. semivariogram model for different soil parameters: (a) Nitrogen, (b) Phosphorus, (C) Potassium,  

(d) Organic matter, and (e) Soil pH. 

(a) (b)

(c) (d)

(e)
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Figure 5. Spatial map of soil properties (a) Nitrogen, (b) Phosphorus, (c) Potassium, (d) Organic matter, and (e) Soil pH. 

4. Conclusion 

This research demonstrates the spatial variability of the soil properties using a stable semivariogram model that 

best fits with sample data. Traditional classical statistical methods only tell about the variation in data by analyzing 

minimum and maximum values but lack in identifying the source of variability. However, by applying the exponential 

and circular models, the present research shows that soil pH and nitrogen were the spatially least varying parameters 

than phosphorus, potassium, and organic matter. The reason behind the variation within a small distance is due to land 

management and cultivation practices. Fertility mapping shows that the parameters nitrogen, phosphorus, and 

potassium were medium in status at 81%, 56%, and 57% of areas, respectively. Likewise, 65% of the area is low in organic 

matter content, and 49% of the area is covered by moderately acidic pH soil. Acidic soil in most of the area needs to be 

reclaimed by using farmyard manure, green manuring, and reducing the use of acid-forming fertilizers. Furthermore, 

this research would be the backbone for integrated nutrient management, cropland suitability analysis, land use 

planning, and sustainable land management in the future. 

²
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